Geometrically thick tori around compact objects with a quadrupole moment

Jan-Menno Memmen
Jan-Menno Memmen and Volker Perlick 2021 Class. Quantum Grav. 38135002

9. Juli 2021

Content

(1) Theory

- Fluids in circular motions and specific angular momentum
- Circular geodesics
(2) Tori in the q-metric
- Metric and mass multipole moments
- Lightlike and timelike geodesics
- Polish doughnuts and the effective potential
(3) Tori in Erez-Rosen spacetime
- Metric and mass multipole moments
- Polish doughnuts and the effective potential
(4) Conclusion

Effective potential and thick accretion tori in static spacetimes

From the normalisation condition $u_{\mu} u^{\mu} \stackrel{!}{=}-1$, we can describe the time component by using the specific angular momentum $I=\frac{g_{t t}}{g_{\varphi \varphi}}$:

$$
u_{t}^{-2}=-g^{t t}-l^{2} g^{\varphi \varphi}
$$

Euler equation for a perfect fluid in circular motion:

$$
\partial_{\mu} \ln \left|u_{t}\right|-\left(\frac{\Omega}{1-\Omega \mid}\right)=-\frac{1}{\rho h} \partial_{\mu} p
$$

For a barotropic fluid, surfaces of constant I and Ω coincide. If $\mathrm{d} / \neq 0$, then $\Omega=\Omega(I) \rightarrow$ relativistic von Zeipel theorem. In that case, integrate Euler equation to find

$$
\mathcal{W}-\mathcal{W}_{i n}:=-\int_{0}^{p} \frac{\mathrm{~d} p^{\prime}}{\rho h}=\ln \left|u_{t}\right|-\ln \left|\left(u_{t}\right)_{i n}\right|-\int_{l_{i n}}^{l} \frac{\Omega}{1-\Omega I^{\prime}} \mathrm{d} \prime^{\prime},
$$

For constant angular momentum and choosing $\mathcal{W}_{\text {in }}=-\ln \left|\left(u_{t}\right)_{\text {in }}\right|$, this equation reduces to

$$
\mathcal{W}(I, r, \vartheta)=-\frac{1}{2} \ln \left(-g^{t t}(r, \vartheta)-I^{2} g^{\varphi \varphi}(r, \vartheta)\right)
$$

\Rightarrow 'Polish Doughnuts'

Circular lightlike and timelike geodesics I

Fluid element at the centre moves along circular timelike geodesic \rightarrow study properties of circular geodesics in the considered spacetimes! Consider geodesics in the equatorial plane \rightarrow Lagrangian:

$$
\mathcal{L}=\frac{1}{2}\left(g_{t t} \dot{t}^{2}+g_{r r} \dot{r}^{2}+g_{\varphi \varphi} \dot{\varphi}^{2}\right)
$$

Constants of motion:

$$
E=g_{t t} \dot{t}, \quad L=g_{\varphi \varphi} \dot{\varphi}, \quad \varepsilon=-g_{t t} \dot{t}^{2}-g_{r r} \dot{r}^{2}-g_{\varphi \varphi} \dot{\varphi}^{2}
$$

where $\varepsilon=0$ for lightlike and $\varepsilon=1$ for timelike geodesics. Defining the effective potential \mathcal{V} :

$$
-g_{t t} g_{r r} \dot{r}^{2}+\mathcal{V}=E^{2} \text { with } \mathcal{V}=-g_{t t}(r)\left(\frac{L^{2}}{g_{\varphi \varphi}(r)}+\varepsilon\right)
$$

Circular motion $(\dot{r}=0$ and $\ddot{r}=0)$ is equivalent to

$$
\mathcal{V}(\varepsilon, L, r)=E^{2}, \quad \frac{\partial \mathcal{V}(\varepsilon, L, r)}{\partial r}=0
$$

Circular lightlike and timelike geodesics II

For lightlike geodesics $\varepsilon=0$, the two conditions are equivalent to

$$
\frac{L^{2}}{E^{2}}=-\frac{g_{\varphi \varphi}}{g_{t t}}, \quad g_{t t} g_{\varphi \varphi}^{\prime}=g_{\varphi \varphi} g_{t t}^{\prime}
$$

\rightarrow position of the photon circle
For timelike geodesics $\varepsilon=1$, the two conditions lead to the "Keplerian" constants of motion:

$$
L_{K}^{2}=\frac{g_{\varphi \varphi}^{2} g_{t t}^{\prime}}{g_{t t} g_{\varphi \varphi}^{\prime}-g_{\varphi \varphi} g_{t t}^{\prime}}, \quad E_{K}^{2}=-\frac{g_{t t}^{2} g_{\varphi \varphi}^{\prime}}{g_{t t} g_{\varphi \varphi}^{\prime}-g_{\varphi \varphi} g_{t t}^{\prime}}
$$

\rightarrow Keplerian specific angular momentum (KSAM) and Keplerian angular velocity:

$$
I_{K}^{2}=\left(\frac{L_{K}}{E_{K}}\right)^{2}=-\frac{\partial_{r} g^{t t}}{\partial_{r} g^{\varphi \varphi}}, \quad \Omega_{K}^{2}=\left(\frac{g_{t t} L_{K}}{g_{\varphi \varphi} E_{K}}\right)^{2}=-\frac{\partial_{r} g_{t t}}{\partial_{r} g_{\varphi \varphi}}
$$

Marginally stable circular orbit (last stable circular orbit):

$$
I_{K}^{\prime}\left(r_{\mathrm{ms}}\right) \stackrel{!}{=} 0
$$

Marginally bound circular orbit:

$$
\mathcal{V}\left(1, L_{K}\left(r_{\mathrm{mb}}\right), r_{\mathrm{mb}}\right) \stackrel{!}{=} 1 \Leftrightarrow E_{K}^{2}\left(r_{\mathrm{mb}}\right) \stackrel{!}{=} 1
$$

The q-metric

Simplest exact static exterior solution of the vacuum field equations with non-vanishing quadrupole moment, its metric:

$$
\begin{aligned}
d s^{2}= & -\left(1-\frac{2 M}{r}\right)^{1+q} d t^{2} \\
& +\left(1-\frac{2 M}{r}\right)^{-q}\left[\left(1+\frac{M^{2} \sin ^{2} \vartheta}{r^{2}-2 M r}\right)^{-q(2+q)}\left(\frac{d r^{2}}{1-\frac{2 M}{r}}+r^{2} d \vartheta^{2}\right)+r^{2} \sin ^{2} \vartheta d \varphi^{2}\right]
\end{aligned}
$$

where q : quadrupole parameter, M : mass parameter.
Mass multipole moments (Geroch-Hansen):

$$
M_{0}=(1+q) M, \quad M_{2}=-\frac{M^{3}}{3} q(q+1)(q+2)
$$

For later comparison, express the q-metric in terms of M_{0} and M_{2} (restrict discussion to $q>-1$ and $M>0$):

$$
M=M_{0} \sqrt{3 \frac{M_{2}}{M_{0}^{3}}+1}, \quad q=\frac{1}{\sqrt{3 \frac{M_{2}}{M_{0}^{3}}+1}}-1
$$

Marginally bound and marginally stable circular orbits

For lightlike geodesics, there is exactly one solution for photon circles:

$$
r_{c}=(3+2 q) M=\left(2+\sqrt{1+3 \frac{M_{2}}{M_{0}^{3}}}\right)
$$

Marginally bound circular orbit: only numerically, up to one Marginally stable circular orbit:

$$
r_{\mathrm{ms}}^{ \pm}=M\left(4+3 q \pm \sqrt{5 q^{2}+10 q+4}\right)
$$

\rightarrow splits the family of q-metrics intro three classes:
Class I: $\infty>q>-1 / 2$ or $-1 / 3<M_{2} / M_{0}^{3}<1$

- Schwarzschild-like

Class II : $-1 / 2>q \gtrsim-0.553$ or $1<M_{2} / M_{0}^{3}<4 / 3$

- two marginally stable, but no photon circle anymore

Class III: $-0.553 \gtrsim q>-1$ or $4 / 3<M_{2} / M_{0}^{3}<\infty$

- all orbits $>2 M$ are stable

Depiction of orbits

Abbildung: Circular orbits in the q-metric, depending on the quadrupole moment.

Effective potential in the equatorial plane

$$
\mathcal{W}(r, I, \vartheta)=\frac{1}{2} \ln \left[\frac{r^{2} \sin ^{2} \vartheta}{\left(1-\frac{2 M}{r}\right)^{-(1+q)} r^{2} \sin ^{2} \vartheta-I^{2}\left(1-\frac{2 M}{r}\right)^{q}}\right]
$$

Effective potential in Class II spacetimes: the connection of double tori and fish

Abbildung: Polar dependency of double tori for Class II spacetimes, depending on the quadrupole moment, forming fish-like structures.

The Erez-Rosen spacetime

First found solution of Einstein's vacuum field equations identified as describing the gravitational field around a central object with a quadrupole moment

$$
d s^{2}=-f d t^{2}+\frac{\sigma^{2}}{f}\left[e^{2 \gamma}\left(x^{2}-y^{2}\right)\left(\frac{d x^{2}}{x^{2}-1}+\frac{d y^{2}}{1-y^{2}}\right)+\left(x^{2}-1\right)\left(1-y^{2}\right) d \varphi^{2}\right]
$$

with

$$
\begin{aligned}
f= & \frac{x-1}{x+1} e^{-2 q P_{2} Q_{2}} \\
\gamma= & \frac{1}{2}(1+q)^{2} \ln \frac{x^{2}-1}{x^{2}-y^{2}}+2 q\left(1-P_{2}\right) Q_{1}+q^{2}\left(1-P_{2}\right) \cdot\left[\left(1+P_{2}\right)\left(Q_{1}^{2}-Q_{2}^{2}\right)\right. \\
& \left.+\frac{1}{2}\left(x^{2}-1\right)\left(2 Q_{2}^{2}-3 x Q_{1} Q_{2}+3 Q_{0} Q_{2}-Q_{2}^{\prime}\right)\right]
\end{aligned}
$$

with $Q=Q(x)$ and $P=P(y)$, and q : quadrupole parameter.
Transformation to Schwarzschild-like coordinates via $x=r / M-1$ and $y=\cos \vartheta$. Multipole moments (Geroch-Hansen):

$$
M_{0}=M, \quad M_{2}=\frac{2}{15} q^{3} M^{3}
$$

Marginally bound and marginally stable circular orbits

For lightlike geodesics, there are up to 2 solutions for photon circles, determined by:

$$
r-3 M-q r(r-2 M) \partial_{r} Q_{2}(r / M-1) \stackrel{!}{=} 0
$$

Marginally bound circular orbit: only numerically, up to one
Marginally stable circular orbit: also, only numerically, up to two
Orbit properties divide Erez-Rosen spacetimes into 3:

$$
\text { Class I: }-\infty<q<1 \text { or }-\infty<M_{2} / M_{0}^{3} \lesssim 0.13
$$

- Schwarzschild-like

Class IIa : $1<q \lesssim 2.25$ or $0.13 \lesssim M_{2} / M_{0}^{3} \lesssim 1.52$

- two photon circles!

Class IIb: $2.25 \lesssim q<4.8$ or $1.52 \lesssim M_{2} / M_{0}^{3} \lesssim 25.8$

- two marginally stable, but no photon circle anymore - see Class II q-metric

Class III : $4.8 \lesssim q<\infty$ or $25.8 \lesssim M_{2} / M_{0}^{3}<\infty$

- all orbits $>2 M$ are stable

Depiction of orbits

Abbildung: Circular orbits in Erez-Rosen spacetime, depending on the quadrupole moment.

Effective potential in the equatorial plane

$$
\mathcal{W}(r, I, \vartheta)=\frac{1}{2} \ln \left[\frac{r^{2}(r-2 M) e^{-2 q P_{2}(\cos \vartheta) Q_{2}(r / M-1)}}{r^{3} \sin ^{2} \vartheta-I^{2}(r-2) e^{-4 q P_{2}(\cos \vartheta) Q_{2}(r / M-1)}}\right]
$$

Effective potential in Class II spacetimes

r / M_{0}

Abbildung: Polar dependency of the effective potential for class II spacetimes. The black numbers represent the density at the position of the equipotential surfaces.

Conclusion

- both q-metric and Erez-Rosen spacetime can be distinguished into 3 classes
- In class I, tori are qualitatively similar to the tori in Schwarzschild spacetime
- In class II, there are qualitative differences
- double tori, fish-like structures
- two centres
- no accretion
- In class III, tori cannot have a cusp, thus no accretion

