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Fluids in circular motions and specific angular momentum
Circular geodesics

Effective potential and thick accretion tori in static spacetimes

From the normalisation condition uµuµ
!

= −1, we can describe the time component by

using the specific angular momentum l =
gtt

gϕϕ
:

u−2
t = −g tt − l2gϕϕ

Euler equation for a perfect fluid in circular motion:

∂µ ln |ut | −
(

Ω

1− Ωl

)
= −

1

ρh
∂µp

For a barotropic fluid, surfaces of constant l and Ω coincide. If dl 6= 0, then
Ω = Ω(l) → relativistic von Zeipel theorem. In that case, integrate Euler equation to
find

W −Win := −
∫ p

0

dp′

ρh
= ln |ut | − ln |(ut)in| −

∫ l

lin

Ω

1− Ωl ′
dl ′ ,

For constant angular momentum and choosing Win = − ln |(ut)in|, this equation
reduces to

W(l , r , ϑ) = −
1

2
ln

(
−g tt(r , ϑ)− l2gϕϕ(r , ϑ)

)
⇒ ’Polish Doughnuts’
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Circular geodesics

Circular lightlike and timelike geodesics I

Fluid element at the centre moves along circular timelike geodesic
→ study properties of circular geodesics in the considered spacetimes!
Consider geodesics in the equatorial plane → Lagrangian:

L =
1

2

(
gtt ṫ

2 + grr ṙ
2 + gϕϕϕ̇

2

)
Constants of motion:

E = gtt ṫ, L = gϕϕϕ̇, ε = −gtt ṫ2 − grr ṙ
2 − gϕϕϕ̇

2 ,

where ε = 0 for lightlike and ε = 1 for timelike geodesics.
Defining the effective potential V:

−gttgrr ṙ2 + V = E2 with V = −gtt(r)

(
L2

gϕϕ(r)
+ ε

)

Circular motion (ṙ = 0 and r̈ = 0) is equivalent to

V(ε, L, r) = E2,
∂V(ε, L, r)

∂r
= 0
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Fluids in circular motions and specific angular momentum
Circular geodesics

Circular lightlike and timelike geodesics II

For lightlike geodesics ε = 0, the two conditions are equivalent to

L2

E2
= −

gϕϕ

gtt
, gttg

′
ϕϕ = gϕϕg

′
tt

→ position of the photon circle
For timelike geodesics ε = 1, the two conditions lead to the ”Keplerian” constants of
motion:

L2
K =

g2
ϕϕg

′
tt

gttg ′ϕϕ − gϕϕg ′tt
, E2

K = −
g2
ttg
′
ϕϕ

gttg ′ϕϕ − gϕϕg ′tt

→ Keplerian specific angular momentum (KSAM) and Keplerian angular velocity:

l2K =

(
LK

EK

)2

= −
∂rg tt

∂rgϕϕ
, Ω2

K =

(
gttLK

gϕϕEK

)2

= −
∂rgtt

∂rgϕϕ

Marginally stable circular orbit (last stable circular orbit):

l ′K (rms)
!

= 0

Marginally bound circular orbit:

V(1, LK (rmb), rmb)
!

= 1 ⇔ E2
K (rmb)

!
= 1
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The q-metric

Simplest exact static exterior solution of the vacuum field equations with
non-vanishing quadrupole moment, its metric:

ds2 =−
(

1−
2M

r

)1+q

dt2

+

(
1−

2M

r

)−q[(
1 +

M2 sin2 ϑ

r2 − 2Mr

)−q(2+q)( dr2

1− 2M
r

+ r2dϑ2

)
+ r2 sin2 ϑdϕ2

]
,

where q: quadrupole parameter, M: mass parameter.
Mass multipole moments (Geroch-Hansen):

M0 = (1 + q)M, M2 = −
M3

3
q(q + 1)(q + 2)

For later comparison, express the q-metric in terms of M0 and M2 (restrict discussion
to q > −1 and M > 0):

M = M0

√
3
M2

M3
0

+ 1, q =
1√

3 M2

M3
0

+ 1

− 1
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Marginally bound and marginally stable circular orbits

For lightlike geodesics, there is exactly one solution for photon circles:

rc = (3 + 2q)M =

(
2 +

√
1 + 3

M2

M3
0

)
Marginally bound circular orbit: only numerically, up to one
Marginally stable circular orbit:

r±ms = M

(
4 + 3q ±

√
5q2 + 10q + 4

)
→ splits the family of q-metrics intro three classes:

Class I : ∞ > q > −1/2 or −1/3 < M2/M3
0 < 1

Schwarzschild-like

Class II : −1/2 > q & −0.553 or 1 < M2/M3
0 < 4/3

two marginally stable, but no photon circle anymore

Class III : −0.553 & q > −1 or 4/3 < M2/M3
0 <∞

all orbits > 2M are stable
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Depiction of orbits

Abbildung: Circular orbits in the q-metric, depending on the quadrupole moment.
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Effective potential in the equatorial plane

W(r , l , ϑ) =
1

2
ln

[
r2 sin2 ϑ(

1− 2M
r

)−(1+q)
r2 sin2 ϑ− l2

(
1− 2M

r

)q
]

Abbildung: Caption
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Effective potential in Class II spacetimes: the connection of double tori and
fish

Abbildung: Polar dependency of double tori for Class II spacetimes, depending on the quadrupole moment, forming fish-like structures.
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The Erez-Rosen spacetime

First found solution of Einstein’s vacuum field equations identified as describing the
gravitational field around a central object with a quadrupole moment

ds2 = −fdt2 +
σ2

f

[
e2γ(x2 − y2)

(
dx2

x2 − 1
+

dy2

1− y2

)
+ (x2 − 1)(1− y2)dϕ2

]
with

f =
x − 1

x + 1
e−2qP2Q2

γ =
1

2
(1 + q)2 ln

x2 − 1

x2 − y2
+ 2q (1− P2)Q1 + q2 (1− P2) ·

[
(1 + P2)

(
Q2

1 − Q2
2

)
+

1

2

(
x2 − 1

) (
2Q2

2 − 3xQ1Q2 + 3Q0Q2 − Q′2
)]

with Q = Q(x) and P = P(y), and q: quadrupole parameter.
Transformation to Schwarzschild-like coordinates via x = r/M − 1 and y = cosϑ.
Multipole moments (Geroch-Hansen):

M0 = M, M2 =
2

15
q3M3
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Marginally bound and marginally stable circular orbits

For lightlike geodesics, there are up to 2 solutions for photon circles, determined by:

r − 3M − qr(r − 2M)∂rQ2(r/M − 1)
!

= 0

Marginally bound circular orbit: only numerically, up to one
Marginally stable circular orbit: also, only numerically, up to two
Orbit properties divide Erez-Rosen spacetimes into 3:

Class I : −∞ < q < 1 or −∞ < M2/M3
0 . 0.13

Schwarzschild-like

Class IIa : 1 < q . 2.25 or 0.13 . M2/M3
0 . 1.52

two photon circles!

Class IIb : 2.25 . q < 4.8 or 1.52 . M2/M3
0 . 25.8

two marginally stable, but no photon circle anymore - see Class II q-metric

Class III : 4.8 . q <∞ or 25.8 . M2/M3
0 <∞

all orbits > 2M are stable
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Depiction of orbits

Abbildung: Circular orbits in Erez-Rosen spacetime, depending on the quadrupole moment.
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Effective potential in the equatorial plane

W(r , l , ϑ) =
1

2
ln

[
r2(r − 2M)e−2qP2(cosϑ)Q2(r/M−1)

r3 sin2 ϑ− l2(r − 2)e−4qP2(cosϑ)Q2(r/M−1)

]

Abbildung: Caption
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Effective potential in Class II spacetimes

Abbildung: Polar dependency of the effective potential for class II spacetimes. The black numbers represent the density at the position of
the equipotential surfaces.
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Conclusion

both q-metric and Erez-Rosen spacetime can be distinguished into 3 classes

In class I, tori are qualitatively similar to the tori in Schwarzschild spacetime

In class II, there are qualitative differences
double tori, fish-like structures
two centres
no accretion

In class III, tori cannot have a cusp, thus no accretion
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