Geometrically thick tori around compact objects with a quadrupole moment

Jan-Menno Memmen Jan-Menno Memmen and Volker Perlick 2021 Class. Quantum Grav. 38 135002

9. Juli 2021

Jan-Menno Memmen Jan-Menno Memmen and Volker Perlick 2021 Class. Geometrically thick tori around compact objects with a quadrupole moment

Content

Theory

- Fluids in circular motions and specific angular momentum
- Circular geodesics

2 Tori in the q-metric

- Metric and mass multipole moments
- Lightlike and timelike geodesics
- · Polish doughnuts and the effective potential

Tori in Erez-Rosen spacetime

- Metric and mass multipole moments
- · Polish doughnuts and the effective potential

4 Conclusion

Theory

Tori in the q-metric Tori in Erez-Rosen spacetime Conclusion Fluids in circular motions and specific angular momentum Circular geodesics

Effective potential and thick accretion tori in static spacetimes

From the normalisation condition $u_{\mu}u^{\mu} \stackrel{!}{=} -1$, we can describe the time component by using the *specific angular momentum* $I = \frac{g_{tt}}{g_{toro}}$:

$$u_t^{-2} = -g^{tt} - l^2 g^{\varphi\varphi}$$

Euler equation for a perfect fluid in circular motion:

$$\partial_{\mu} \ln |u_t| - \left(\frac{\Omega}{1 - \Omega l}\right) = -\frac{1}{\rho h} \partial_{\mu} p$$

For a barotropic fluid, surfaces of constant I and Ω coincide. If $dI \neq 0$, then $\Omega = \Omega(I) \rightarrow relativistic von Zeipel theorem$. In that case, integrate Euler equation to find

$$\mathcal{W} - \mathcal{W}_{in} := -\int_0^p rac{\mathrm{d} p'}{
ho h} = \ln |u_t| - \ln |(u_t)_{in}| - \int_{l_{in}}^l rac{\Omega}{1 - \Omega l'} \mathrm{d} l'$$

For constant angular momentum and choosing $W_{in} = -\ln|(u_t)_{in}|$, this equation reduces to

$$\mathcal{W}(l,r,\vartheta) = -\frac{1}{2} \ln \left(-g^{tt}(r,\vartheta) - l^2 g^{\varphi\varphi}(r,\vartheta) \right)$$

 \Rightarrow 'Polish Doughnuts'

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ 少々ぐ

Theory

Tori in the q-metric Tori in Erez-Rosen spacetime Conclusion Fluids in circular motions and specific angular momentum Circular geodesics

Circular lightlike and timelike geodesics I

Fluid element at the centre moves along circular timelike geodesic \rightarrow study properties of circular geodesics in the considered spacetimes! Consider geodesics in the equatorial plane \rightarrow Lagrangian:

$$\mathcal{L} = rac{1}{2} igg(g_{tt} \dot{t}^2 + g_{rr} \dot{r}^2 + g_{\varphi \varphi} \dot{arphi}^2 igg)$$

Constants of motion:

$$E = g_{tt}\dot{t}, \qquad L = g_{\varphi\varphi}\dot{\varphi}, \qquad \varepsilon = -g_{tt}\dot{t}^2 - g_{rr}\dot{r}^2 - g_{\varphi\varphi}\dot{\varphi}^2 ,$$

where $\varepsilon = 0$ for lightlike and $\varepsilon = 1$ for timelike geodesics. Defining the effective potential V:

$$-g_{tt}g_{rr}\dot{r}^2 + \mathcal{V} = E^2$$
 with $\mathcal{V} = -g_{tt}(r)\left(\frac{L^2}{g_{\varphi\varphi}(r)} + \varepsilon\right)$

Circular motion ($\dot{r} = 0$ and $\ddot{r} = 0$) is equivalent to

$$\mathcal{V}(\varepsilon, L, r) = E^2, \quad \frac{\partial \mathcal{V}(\varepsilon, L, r)}{\partial r} = 0$$

4/16

Theory

Tori in the q-metric Tori in Erez-Rosen spacetime Conclusion Fluids in circular motions and specific angular momentum Circular geodesics

Circular lightlike and timelike geodesics II

For lightlike geodesics $\varepsilon = 0$, the two conditions are equivalent to

$$rac{L^2}{E^2} = -rac{g_{arphiarphi}}{g_{tt}}, \quad g_{tt}g'_{arphiarphi} = g_{arphiarphi}g'_{tt}$$

 \rightarrow position of the photon circle

For timelike geodesics $\varepsilon = 1$, the two conditions lead to the "Keplerian" constants of motion:

$$L_{K}^{2} = \frac{g_{\varphi\varphi}^{2}g_{tt}'}{g_{tt}g_{\varphi\varphi}' - g_{\varphi\varphi}g_{tt}'}, \quad E_{K}^{2} = -\frac{g_{tt}^{2}g_{\varphi\varphi}'}{g_{tt}g_{\varphi\varphi}' - g_{\varphi\varphi}g_{tt}'}$$

 \rightarrow Keplerian specific angular momentum (KSAM) and Keplerian angular velocity:

$$I_{K}^{2} = \left(\frac{L_{K}}{E_{K}}\right)^{2} = -\frac{\partial_{r}g^{tt}}{\partial_{r}g^{\varphi\varphi}}, \quad \Omega_{K}^{2} = \left(\frac{g_{tt}L_{K}}{g_{\varphi\varphi}E_{K}}\right)^{2} = -\frac{\partial_{r}g_{tt}}{\partial_{r}g_{\varphi\varphi}}$$

Marginally stable circular orbit (last stable circular orbit):

$$l'_K(r_{\rm ms}) \stackrel{!}{=} 0$$

Marginally bound circular orbit:

$$\mathcal{V}(1, L_{\mathcal{K}}(\mathbf{r}_{\mathrm{mb}}), \mathbf{r}_{\mathrm{mb}}) \stackrel{!}{=} 1 \quad \Leftrightarrow \quad E_{\mathcal{K}}^{2}(\mathbf{r}_{\mathrm{mb}}) \stackrel{!}{=} 1$$

Metric and mass multipole moments Lightlike and timelike geodesics Polish doughnuts and the effective potential

The q-metric

Simplest exact static exterior solution of the vacuum field equations with non-vanishing quadrupole moment, its metric:

$$\begin{split} ds^2 &= -\left(1 - \frac{2M}{r}\right)^{1+q} dt^2 \\ &+ \left(1 - \frac{2M}{r}\right)^{-q} \left[\left(1 + \frac{M^2 \sin^2 \vartheta}{r^2 - 2Mr}\right)^{-q(2+q)} \left(\frac{dr^2}{1 - \frac{2M}{r}} + r^2 d\vartheta^2\right) + r^2 \sin^2 \vartheta d\varphi^2 \right] \,, \end{split}$$

where *q*: quadrupole parameter, M: mass parameter. Mass multipole moments (Geroch-Hansen):

$$M_0 = (1+q)M,$$
 $M_2 = -\frac{M^3}{3}q(q+1)(q+2)$

For later comparison, express the q-metric in terms of M_0 and M_2 (restrict discussion to q > -1 and M > 0):

$$M = M_0 \sqrt{3 rac{M_2}{M_0^3} + 1}, \qquad q = rac{1}{\sqrt{3 rac{M_2}{M_0^3} + 1}} - 1$$

6/16

Metric and mass multipole moments Lightlike and timelike geodesics Polish doughnuts and the effective potential

Marginally bound and marginally stable circular orbits

For lightlike geodesics, there is exactly one solution for photon circles:

$$r_c = (3+2q)M = \left(2 + \sqrt{1 + 3\frac{M_2}{M_0^3}}\right)$$

Marginally bound circular orbit: only numerically, up to one Marginally stable circular orbit:

$$r_{\rm ms}^{\pm} = M \bigg(4 + 3q \pm \sqrt{5q^2 + 10q + 4} \bigg)$$

 \rightarrow splits the family of q-metrics intro three classes:

Class I : $\infty > q > -1/2$ or $-1/3 < M_2/M_0^3 < 1$

Schwarzschild-like

Class II $: -1/2 > q \gtrsim -0.553$ or $1 < M_2/M_0^3 < 4/3$

• two marginally stable, but no photon circle anymore

Class III : $-0.553\gtrsim q>-1$ or $4/3< M_2/M_0^3<\infty$ \bullet all orbits >2M are stable

化口水 化塑料 化医水化医水合 医

Metric and mass multipole moments Lightlike and timelike geodesics Polish doughnuts and the effective potential

Depiction of orbits

Abbildung: Circular orbits in the q-metric, depending on the quadrupole moment.

★ロト★御と★注と★注と、注

Metric and mass multipole moments Lightlike and timelike geodesics Polish doughnuts and the effective potential

Effective potential in the equatorial plane

$$\mathcal{W}(r,l,\vartheta) = \frac{1}{2} \ln \left[\frac{r^2 \sin^2 \vartheta}{\left(1 - \frac{2M}{r}\right)^{-(1+q)} r^2 \sin^2 \vartheta - l^2 \left(1 - \frac{2M}{r}\right)^q} \right]$$

Metric and mass multipole moments Lightlike and timelike geodesics Polish doughnuts and the effective potential

Effective potential in Class II spacetimes: the connection of double tori and fish

Abbildung: Polar dependency of double tori for Class II spacetimes, depending on the quadrupole moment, forming fish-like structures.

Metric and mass multipole moments Polish doughnuts and the effective potential

The Erez-Rosen spacetime

First found solution of Einstein's vacuum field equations identified as describing the gravitational field around a central object with a quadrupole moment

$$ds^{2} = -fdt^{2} + \frac{\sigma^{2}}{f} \bigg[e^{2\gamma} (x^{2} - y^{2}) \bigg(\frac{dx^{2}}{x^{2} - 1} + \frac{dy^{2}}{1 - y^{2}} \bigg) + (x^{2} - 1)(1 - y^{2})d\varphi^{2} \bigg]$$

with

$$f = \frac{x - 1}{x + 1} e^{-2qP_2Q_2}$$

$$\gamma = \frac{1}{2}(1 + q)^2 \ln \frac{x^2 - 1}{x^2 - y^2} + 2q(1 - P_2)Q_1 + q^2(1 - P_2) \cdot \left[(1 + P_2)(Q_1^2 - Q_2^2) + \frac{1}{2}(x^2 - 1)(2Q_2^2 - 3xQ_1Q_2 + 3Q_0Q_2 - Q_2')\right]$$

with Q = Q(x) and P = P(y), and q: quadrupole parameter. Transformation to Schwarzschild-like coordinates via x = r/M - 1 and $y = \cos \vartheta$. Multipole moments (Geroch-Hansen):

$$M_0 = M, \quad M_2 = \frac{2}{15}q^3M^3$$

11/16

Metric and mass multipole moments Polish doughnuts and the effective potential

Marginally bound and marginally stable circular orbits

For lightlike geodesics, there are up to 2 solutions for photon circles, determined by:

$$r-3M-qr(r-2M)\partial_r Q_2(r/M-1)\stackrel{!}{=} 0$$

Marginally bound circular orbit: only numerically, up to one Marginally stable circular orbit: also, only numerically, up to two Orbit properties divide Erez-Rosen spacetimes into 3:

 $\begin{array}{l} \text{Class I} : -\infty < q < 1 \text{ or } -\infty < M_2/M_0^3 \lesssim 0.13 \\ \bullet \text{ Schwarzschild-like} \\ \text{Class IIa} : 1 < q \lesssim 2.25 \text{ or } 0.13 \lesssim M_2/M_0^3 \lesssim 1.52 \\ \bullet \text{ two photon circles!} \\ \text{Class IIb} : 2.25 \lesssim q < 4.8 \text{ or } 1.52 \lesssim M_2/M_0^3 \lesssim 25.8 \\ \bullet \text{ two marginally stable, but no photon circle anymore - see Class II q-metric} \\ \text{Class III} : 4.8 \lesssim q < \infty \text{ or } 25.8 \lesssim M_2/M_0^3 < \infty \\ \bullet \text{ all orbits } > 2M \text{ are stable} \end{array}$

化口水 化塑料 化医水油 医水白素

Metric and mass multipole moments Polish doughnuts and the effective potential

Depiction of orbits

Abbildung: Circular orbits in Erez-Rosen spacetime, depending on the quadrupole moment.

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>

Metric and mass multipole moments Polish doughnuts and the effective potential

Effective potential in the equatorial plane

$$\mathcal{W}(r, l, \vartheta) = \frac{1}{2} \ln \left[\frac{r^2(r - 2M)e^{-2qP_2(\cos\vartheta)Q_2(r/M-1)}}{r^3 \sin^2 \vartheta - l^2(r-2)e^{-4qP_2(\cos\vartheta)Q_2(r/M-1)}} \right]$$

୬ବ୍ଦ

Metric and mass multipole moments Polish doughnuts and the effective potential

Effective potential in Class II spacetimes

Abbildung: Polar dependency of the effective potential for class II spacetimes. The black numbers represent the density at the position of the equipotential surfaces.

Conclusion

- both q-metric and Erez-Rosen spacetime can be distinguished into 3 classes
- In class I, tori are qualitatively similar to the tori in Schwarzschild spacetime
- In class II, there are qualitative differences
 - · double tori, fish-like structures
 - two centres
 - no accretion
- In class III, tori cannot have a cusp, thus no accretion