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Outline
What are the Gamma-Ray Bursts (GRBs)? 

Evidence of Neutron Star or Black Hole

Afterglow Emission: Multipolar emission from highly magnetized NS

GRBs, newborn NS, BH, and Afterglow emission (Swift-XRT observation)

Dainotti relation and NSs

Constraint on Equation of States by afterglow emission of some specific SGRBs?

Toward a more complex solution for Afterglow: eccentricity…Model the newborn NS through the 
equilibrium sequence of Maclaurin spheroids

Conclusions
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Gamma-ray bursts (GRBs)  
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Standard Model of Progenitors

Luminous



1. Radiative Processes of Gamma-Ray Bursts (GRBs): Internal Shock??
Temporal and Spectral Analysis of GECAM Observations

- Study of GRB 230307A: second brightest GRB.

- Temporal behavior, flux evolution, and high-latitude emission.

- Identification of a new subclass (Chen Wei’s talk)

GECAM

5

R. Moradi et al 2024 ApJ 977 155

Chen-Wei Wang et al 2025 ApJ 979 73

Criteria for finding the 
Long Short GRBs



Ruffini, et al., MNRAS 504, 5301–
5326 (2021) 

BdHN: Binary Model for Long GRBs
(Binary driven Hypernova)

SN

Newborn NS

Companion NS
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Prompt vs Afterglow in BdHN
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Analogy with Kerr-Newmann 
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2. BH + the aligned magnetic 
field (B0) Moradi et al A&A 
2021



Over Critical E field regime and 
Ultrarelativistic prompt emission phase

• e+ e- plasma-Baryon expansion 
because of its internal pressure! 9
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Amati Relation

Phenomenological Relation
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Dainotti et al., MNRAS 2008



Highly Magnetized NSs (Magnetar) in
GRBs:Dipolar Component

Highly magnetized NS is formed after WD-RD/
WD merger

  This magnetic field produces an Electric Field

  Overcritical E field produces electron positron 
pair plasma

  Plasma expands and in radius around 10^9-14  cm 
it starts to radiate

• Short and long GRBs


• Explains afterglow

Similar idea for BH pulsar 

 Moradi et al., PRD104, 063043 (2021) 
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Short GRBs (NS-NS mergers): Afterglow

supra-massive NS

Stable NS

BH

• The role of supra-massive NS is more pronounced 
13



Gamma-ray bursts
(GRBs):Dipolar Component
Our understanding of the Magnetic field: Dipolar field

Afterglow of GRBs: Newborn highly magnetized 
Neutron stars or Magnetars 

Dipole component has limits in explaining the 
afterglow;

Although it was successful in some aspects, but t^-2 
cannot explain majority of the afterglows 

Observation: t^-α;  α = 1.48 ± 0.32
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Multipolar Expansion
Wang, Moradi, Li, The Astrophysical Journal, 974:89 (2024)

Dipole Quadrupole Hexapole
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Multipolar Spin-Down of Newborn Magnetars

• Higher-order multipoles (quadrupole, hexapole, octopole) 
dominate spin-down in newborn millisecond magnetars.

• Spin-down luminosity: L_l ∝ Ω^(2l+2) B_l^2 R^(2l+4) Θ_l^2

   - Dipole (l=1): L ∝ Ω⁴ → decay index -2

   - Quadrupole (l=2): L ∝ Ω⁶ → decay index -1.5

   - Hexapole (l=3): L ∝ Ω⁸ → decay index -1.33

• Example: SGR 0418+5729 shows weak dipole but strong 
multipoles (~10¹⁵ G).

• Figure: Luminosity vs. time for single multipoles
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Magnetic Field Scenarios & Luminosity 
Evolution

• Fig 1: All multipoles, same B → dipole dominates at all 
times.

• Fig 3: Increasing B with l:

   - Early: High-l (e.g., octopole) dominates

   - After ~10⁸ s (~3 yr): Dipole takes over

• Multipoles exceed dipole luminosity in early phases
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Solving the GRB Afterglow Puzzle

• Swift-XRT: 204 GRBs with plateaus → 
decay slopes peak at -1.55 (range -1 to 
-2).

• Matches multipolar predictions (quad: 
-1.5, hex: -1.33).

• Reduced χ²; better fit, F-test for the 
nested models.

• Lbol ≈ 5 × LXRT
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• 4 GRBs fitted with multipolar spin-down:

   - GRB 050814/051016B: Quadrupole-dominated

   - GRB 060604: Hexapole-dominated

   - GRB 060614: Dipole-dominated

19



Evidence for Multipolar Fields in Various 
Neutron Stars

• Multipolar fields are essential for pair production in NS magnetospheres.

• Observational and simulation advances demand multipolar components.

• SGR 0418+5729:

   - Dipole B ~ 10¹² G (spin-down)

   - Multipole B ~ 10¹⁵ G (cyclotron lines)

• PSR J0030+0451 (NICER): Thermal X-ray pulsations imply multipoles.

• Required to explain flares, irregular timing, and detailed X-ray features.

• Younger magnetars (e.g., SGR J1935+2154, SGR 0418+5729) show strong multipoles:

   - B_dip ~ 4×10¹⁴ G, B_non-dip ~ 10¹⁵ G

• Aged magnetars → dominant dipoles; younger ones → pronounced multipoles.

• Early-stage data scarce: CDF-S XT2 is the only known young magnetar (post NS merger).
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Possible Newborn  Magnetars

The formation of magnetar is associated with and 
plays a critical role in various areas of astrophysics;

Superluminous supernova (SLSNs);

Gamma-ray bursts (GRBs); 

Fast radio bursts (FRBs);
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Dainotti Relation & Magnetar Model 

• Dainotti Relation: log LX = log a + b log Ta* (b ≈ -1.07)

• Purpose: Standardizes GRBs, probes central engine physics.

• Central Engine: Magnetars (highly magnetized neutron stars).

• Issue: Dipole spin-down predicts α = -2.

• Observation: Swift-XRT data (238 GRBs) show α in [-1, -2].

• Figure: Distribution of decay indices α (79% between -1 and -2, 

median -1.39).

22



Multipolar Spin-Down Model 

• Magnetars may have higher-order multipoles (l = 2, 3...).

• Luminosity:

• Decay index α = -(1 + 1/l)

• Higher l: stronger early emission, steeper early decay.

• Figure: Spin-down luminosity vs time for various multipoles

In Practice: Single multipole is dominant  
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Single multipole
Dainotti et al., MNRAS 

2008



Explaining the Dainotti Relation 

• Multipolar spin-down gives b ≈ -1 slope: log L_X ∝ -log T_a*

• Normalization varies with “l”

• Observed upper limit for Platinum GRBs sample imply l ~1.06 

for the upper limit.
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Caveats and Limitations 

1. Plateau emission may arise from external shocks.

2. Jet geometry and efficiency affect true luminosity.

3. Plasma/Wind effects.

4. Black hole models (e.g., Blandford–Znajek) can mimic relation.
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Conclusions and Future Work 

• Multipolar model explains slope and decay index range.

• Higher-order multipoles dominate early emission.

• Future work:

•  - Constrain εX and θj for individual GRBs.

•  - Use multiwavelength data to refine estimates.

•  - Explore hybrid central engine models.

• Implication: Magnetars with multipoles can unify GRB afterglow behavior.
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Probing Neutron Star EOS via SGRB Magnetar Collapse 

• SGRB “internal plateaus” suggest supramassive magnetars 

temporarily stable via rapid rotation.

• Collapse time (tco) and X-ray decay constrain mass–spin 

conditions at BH formation.

• Goal: Probe the Equation of State (EOS) of neutron stars at 

supranuclear densities.

• Why It Matters: EOS determines maximum mass (M_TOV), 

radii, and phase transitions (e.g., quark matter).

•Figure: NS merger → SMNS → X-ray plateau → BH collapse
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Modeling SGRB Plateaus with Multipolar Magnetic Fields 

• Data Source: 10 SGRBs with Swift-BAT/XRT internal plateaus + rapid decay (Table ).

• Spin-down Luminosity: L_l(t) ∝ B_l^2 Ω^(2l+2)(t)

• Multipolar spin-down (quadrupole, hexapole) better fits than dipole.

• Fitting: LMFIT used; F-tests confirm higher-order field components (e.g., GRB 051210).

• Collapse Time (tco): Sharp luminosity drop → exceeds Mcrit(α).
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From Magnetar Collapse to Kerr Black Hole Spin Extraction 
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NS

BH

BH’s MASS >= NS’s MASS



From Magnetar Collapse to Kerr Black Hole Spin Extraction 

• Collapse Criterion: M ≥ M_crit(α) = M_TOV(1 + k j^l), EOS-dependent (Table).

• Post-collapse Energy:

• Powered by Blandford-Znajek process? We don’t care at this stage.

• Observational Match: Integrated X-ray tail luminosity EPD constrains M, α at collapse.
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EOS Selection via Spin Period Matching 

• Strategy: Compare PNS (from spin-down) to PBH (from Kerr energy at t_co).

• Best EOS Fit: GM1 (MTOV = 2.39 Msun) minimizes ΔP = |PNS - PBH|.

• Disfavored EOSs: TM1 (soft), NL3 (stiff).

• Figure: ΔP distribution
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Model Assumptions and Limitations 

• Assumptions:

•   1. Plateaus powered by magnetar (wind), not external shocks.

•   2. Constant radiative efficiency and jet angle.

•   3. Full Kerr energy extraction (no GW/accretion losses/radiation efficiency).

• Limitations:

•   - Lack of high quality data: GM1/TM1 degeneracy (~20% Δ⟨ΔP⟩).

•   - No exotic EOS (e.g., quark matter).

•   - Limited to 3 nucleonic EOSs.

33

20% Δ⟨ΔP⟩



Toward a Multi-Messenger Probe of Dense Matter 

• SGRB magnetar collapses offer a new probe into supranuclear matter EOS.

• Key Result: Intermediate EOS (GM1, MTOV ≈ 2.4 Msun) preferred.

• Next Steps:

   - Expand SGRB samples (e.g., Einstein Probe).

   - Include hybrid/quark EOS, GW, accretion physics.

   - Full GR simulations (e.g., RNS).

• Impact: Unifies electromagnetic and GW signals in EOS constraints.
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Eccentricity of NS? GW Emission? 
Or Black hole??
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GRB 190114C

It is a newborn highly rotating NS, 

Eccentricity is expected!
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Parisa Hashemi et al 2025 ApJ 986 14



•  Decreasing Eccentricity → rapid drop in moment of inertia I 
• Angular Momentum Loss < I Drop → Ω = J/I spikes 
• Signature: brief X‑ray flare in Swift‑XRT light curve
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X-ray flare; Compressible; Quadrupole EM
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Compresible: Dipole+ GW

Compressible: Quadrupole EM + GW
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Conclusions
➡Multipolar Magnetic field is successful in explaining the afterglow of GRBs

➡Eccentricity is needed in explaining the afterglow evolution of energetic GRBs

➡ For having a more realistic solution: combine both and consider the proper Equation of state 
(EoS)

➡L = LGW + Ldip + Lquad +….

★Numerical Solutions are needed to test different EoS

★Proper EoS, in turn can explain the early flares activities in afterglow of GRBs and GW 
emission. 
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Conclusions and Perspective

➡Most used model of LGRBs is Collapsar

➡Formation of a BH is necessary in Collapsar model

➡Two possibilities: 

★1. BH can behave like magnetar!

★2. LGRBs’ progenitor is a binary system!
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Similar idea for BH pulsar 

 Moradi et al., PRD104, 063043 (2021) 



Thank you!


