
Probing effective quantum gravity with fluid dynamics

Manuel Hohmann

Laboratory of Theoretical Physics, Institute of Physics, University of Tartu
Center of Excellence “Fundamental Universe”

7th Galileo Xu-Guangqui meeting - 11. July 2025

Manuel Hohmann (University of Tartu) Quantum gravity & fluid dynamics GX7 meeting - 11. July 2025 1 / 29



Outline

1. Introduction

2. The kinetic gas model

3. Gravitational field of a kinetic gas

4. Kinetic gas in modified Schwarzschild spacetime

5. Conclusion

Manuel Hohmann (University of Tartu) Quantum gravity & fluid dynamics GX7 meeting - 11. July 2025 2 / 29



Outline

1. Introduction

2. The kinetic gas model

3. Gravitational field of a kinetic gas

4. Kinetic gas in modified Schwarzschild spacetime

5. Conclusion

Manuel Hohmann (University of Tartu) Quantum gravity & fluid dynamics GX7 meeting - 11. July 2025 3 / 29



Problems in gravity and cosmology

• So far unexplained cosmological observations:
◦ Accelerating expansion of the universe
◦ Homogeneity of cosmic microwave background

• Models for explaining these observations:
◦ ΛCDM model / dark energy
◦ Inflation

• Physical mechanisms are not understood:
◦ Unknown type of matter?
◦ Modification of the laws of gravity?
◦ Scalar field in addition to metric mediating gravity?
◦ Quantum gravity effects?

• Idea here: modification of the geometrical structure of spacetime!
◦ Replace metric spacetime geometry by Finsler geometry.
◦ Similarly: replacing flat spacetime by curved spacetime led to GR.

◦ Replace perfect fluid model by velocity-dependent distribution of particles.

• Questions arising from new matter model:
✓ How does a kinetic gas react to a gravitational field?
? How does a kinetic gas create a gravitational field?
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The problem of quantum gravity

• How can we quantize gravity?
◦ Use same methods as in QFT⇝ doesn’t work  .

◦ Guess a complete theory of quantum gravity⇝ hard  .
◦ Assume gravity is classical⇝ leaves unsolved problems  .
◦ Study effective quantum gravity model phenomenology⇝ maybe feasible (✓).

• How can we study effective gravity models?

◦ Don’t care (too much) about fundamental laws of gravity.
◦ Assume that general relativity (GR) is almost correct.
◦ Think of possible sources of quantum corrections to GR.
◦ Study the phenomenology of quantum corrections.

• How can we study quantum gravity phenomenology?

◦ Find physical system which could amplify deviations from general relativity.
◦ Example: study compact system with very strong gravity.
◦ Think of possible observables in the chosen system.
◦ Calculate how effective quantum gravity influences observables.

⇒ Here: effective quantum gravity phenomenology with gas dynamics near black holes.
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How does quantum gravity phenomenology work?

• Basic operating principle of (quantum) gravity theory:

matter motion
quantum
gravity

 Quantum gravity is a black box!
• Quantum gravity must approximate general relativity:

quantum
gravity

= general
relativity

+ ϵ · quantum
correction

⇝ We still have a black box, but it is multiplied by ϵ ≪ 1⇝ perturbation.
✓ General relativity is a very simple theory!
⇒ We know what is in the white box:

general
relativity

=

⇝ Only need to study (all) possible quantum corrections!
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Examples of fluids

• Perfect fluid:
◦ Most general energy-momentum tensor compatible with cosmological symmetry.
◦ No shear stress, no friction.
◦ Characterized by density ρ and pressure p.

· Dust, dark matter: p = 0.
· Radiation: p = 1

3ρ.
· Dark energy: p < − 1

3ρ.

• Collisionless fluid:
◦ Model for dark matter.
◦ “Dust” - non-interacting point masses (stars, galaxies etc.).

• Interacting fluid:
◦ Maxwell-Boltzmann gas: gas with non-vanishing pressure.
◦ Plasma (fluid with multiple types of electrically charged particles).

• Imperfect fluids:
◦ Include shear, friction, viscosity.
◦ Dissipation of kinetic energy into heat.

• Hyperfluid:
◦ Additional coupling to affine connection generates hypermomentum.
◦ Intrinsic property of matter, e.g., spin.
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Why study matter beyond fluids?

• Dynamical friction:
◦ Massive object passes distribution of light objects.

⇒ Gravity of massive object changes positions of lighter objects.
⇒ Perturbation of light objects asserts gravity on massive object.
◦ Example: globular cluster passing through galaxy.

• Splashback:
◦ Gravitational collapse of galaxy cluster.
◦ Galaxies pass each other near center of collapse.

• Stellar streams:
◦ Globular cluster orbiting galaxy disrupted by tidal force.
◦ Constituting stars continue orbiting galaxy.

• Galaxies changing their environment:
◦ Galaxy collisions: colliding gas, passing stars.
◦ Galaxy entering filament or galaxy cluster.

• Dynamics of intergalactic medium:
◦ Cosmic gas highways: gas in and near filaments
◦ Crossing sheets in collapse and structure formation.
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• Galaxies changing their environment:
◦ Galaxy collisions: colliding gas, passing stars.
◦ Galaxy entering filament or galaxy cluster.

• Dynamics of intergalactic medium:
◦ Cosmic gas highways: gas in and near filaments
◦ Crossing sheets in collapse and structure formation.

Manuel Hohmann (University of Tartu) Quantum gravity & fluid dynamics GX7 meeting - 11. July 2025 8 / 29



Why study matter beyond fluids?

• Dynamical friction:
◦ Massive object passes distribution of light objects.

⇒ Gravity of massive object changes positions of lighter objects.
⇒ Perturbation of light objects asserts gravity on massive object.
◦ Example: globular cluster passing through galaxy.

• Splashback:
◦ Gravitational collapse of galaxy cluster.
◦ Galaxies pass each other near center of collapse.

• Stellar streams:
◦ Globular cluster orbiting galaxy disrupted by tidal force.
◦ Constituting stars continue orbiting galaxy.

• Galaxies changing their environment:
◦ Galaxy collisions: colliding gas, passing stars.
◦ Galaxy entering filament or galaxy cluster.

• Dynamics of intergalactic medium:
◦ Cosmic gas highways: gas in and near filaments
◦ Crossing sheets in collapse and structure formation.

Manuel Hohmann (University of Tartu) Quantum gravity & fluid dynamics GX7 meeting - 11. July 2025 8 / 29



Why study matter beyond fluids?

• Dynamical friction:
◦ Massive object passes distribution of light objects.

⇒ Gravity of massive object changes positions of lighter objects.
⇒ Perturbation of light objects asserts gravity on massive object.
◦ Example: globular cluster passing through galaxy.

• Splashback:
◦ Gravitational collapse of galaxy cluster.
◦ Galaxies pass each other near center of collapse.

• Stellar streams:
◦ Globular cluster orbiting galaxy disrupted by tidal force.
◦ Constituting stars continue orbiting galaxy.

• Galaxies changing their environment:
◦ Galaxy collisions: colliding gas, passing stars.
◦ Galaxy entering filament or galaxy cluster.

• Dynamics of intergalactic medium:
◦ Cosmic gas highways: gas in and near filaments
◦ Crossing sheets in collapse and structure formation.

Manuel Hohmann (University of Tartu) Quantum gravity & fluid dynamics GX7 meeting - 11. July 2025 8 / 29



Outline

1. Introduction

2. The kinetic gas model

3. Gravitational field of a kinetic gas

4. Kinetic gas in modified Schwarzschild spacetime

5. Conclusion

Manuel Hohmann (University of Tartu) Quantum gravity & fluid dynamics GX7 meeting - 11. July 2025 9 / 29



Definition of kinetic gas
• Single-component gas:

◦ Constituted by classical, relativistic particles.
◦ Particles have equal properties (mass, charge, . . . ).
◦ Particles follow piecewise geodesic curves.
◦ Endpoints of geodesics are interactions with other particles.

• Collisionless gas:
◦ Particles do not interact with other particles.

⇒ Particles follow geodesics.
• Multi-component gas: multiple types of particles.
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One-particle distribution function

• Kinetic gas described by density in velocity space:
◦ Consider space O of physical (unit, timelike, future pointing) four-velocities.
◦ Consider density on physical velocity space.

• Define one-particle distribution function ϕ : O → R+ such that:

For every hypersurface σ ⊂ O,

N[σ] =

∫
σ

ϕΩ

# of particle trajectories through σ.

◦
◦ Counting of particle trajectories respects hypersurface orientation.

• For multi-component fluids: ϕi for each component i .
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Collisions & the Liouville equation

• Collision in spacetime↭ interruption in observer space.

↭

• For any open set V ∈ O, ∫
∂V

ϕΩ =

∫
V

d(ϕΩ) =
∫

V
LrϕΣ

# of outbound trajectories - # of inbound trajectories.
⇒ Collision density measured by Lrϕ.
• Collisionless fluid: trajectories have no endpoints, Lrϕ = 0.
⇒ Simple, first order equation of motion for collisionless fluid.
⇒ ϕ is constant along integral curves of r.
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Some (very) pictorial examples
Geodesic dust fluid:
ϕ(x , y) ∼ δ(y − u(x)) .

“Jenkka”

Collisionless fluid:
Lrϕ = 0 .

“Polkka”

Interacting fluid:
Lrϕ ̸= 0 .

“Humppa”
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Example: collisionless dust fluid

• Variables describing a classical dust fluid:
◦ Mass density ρ : M → R+.
◦ Velocity u : M → O.

• Particle density function:
ϕ(x , y) ∼ ρ(x)δSx (y ,u(x)) .

• Apply Liouville equation:

0 = ∇ua = ub∂bua + ubNa
b ,

0 = ∇δa(ρua) = ∂a(ρua) +
1
2
ρuagF bc

(
∂agF

bc − Nd
a∂̄dgF

bc

)
.

⇒ Generalized (pressureless) Euler equations to Finsler geometry [MH ’15].
• Metric limit F 2(x , y) = |gab(x)yayb| yields Euler equations:

ub∇bua = 0 , ∇a(ρua) = 0 .
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Action of a kinetic gas

Action for a single point particle:

S = m
∫ t

0
(F ◦ c1)(τ)dτ .

Assume arc length parameter τ :

S = mt . c1(0)

c1(t)
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Action of a kinetic gas

Action for P point particles:

Sgas = m
P∑

i=1

∫ t

0
(F ◦ ci)(τ)dτ .

Assume arc length parameter τ :

Sgas = Pmt . c1(0)

c1(t)

c2(0)

c2(t)

c3(0)

c3(t)

c4(0)

c4(t)

Manuel Hohmann (University of Tartu) Quantum gravity & fluid dynamics GX7 meeting - 11. July 2025 16 / 29



Action of a kinetic gas

• Hypersurface of starting points:

ci(0) ∈ σ0 .

• Hypersurface of end points:

ci(t) ∈ σt .

• Number of particle trajectories:

P = N[στ ] =

∫
στ

ϕΩ .

σ0

c1(0)

c1(t)

c2(0)

c2(t)

c3(0)

c3(t)

c4(0)

c4(t)
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Action of a kinetic gas

• Consider volume

V =
t⋃

τ=0

στ .

• Recall particle action integral:

Sgas = Pmt = m
∫ t

0

(∫
στ

ϕΩ

)
dτ

= m
∫

V
ϕΩ ∧ ω

= m
∫

V
ϕΣ .

Defined through 1-PDF ϕ
[MH, Pfeifer, Voicu ’19].

⇒ Forget particle trajectories!

σ0

σt

c1(0)

c1(t)

c2(0)

c2(t)

c3(0)

c3(t)

c4(0)

c4(t)

V
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Gravitational action

• Gravitational part of the action:

Sgrav =
1

2κ2

∫
V

R0Σ .

• Finsler Ricci scalar R0 = L−1Ra
abyb from curvature of non-linear connection:

Ra
bc ∂̄a = (δbNa

c − δcNa
b)∂̄a = [δb, δc] .

! Unique action obtained from variational completion of Rutz equation [MH, Pfeifer, Voicu ’18].
⇒ Reduces to Einstein-Hilbert action for metric geometry.
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Variation and field equations

• Variation of the kinetic gas action:

δF Sgas =

∫
V
ϕ
δF
F

Σ .

• Variation of the Finsler gravity action:

δF Sgrav = 2
∫

V

[
1
2

gF ab∂̄a∂̄b(F 2R0)− 3R0 − gF ab(∇δaPb − PaPb + ∂̄a(∇Pb))

]
δF
F

Σ .

• Landsberg tensor measures deviation from metric geometry:

Pa
bc = ∂̄cNa

b − Γa
cb , Pa = Pb

ba .

⇒ Gravitational field equations with kinetic gas matter [MH, Pfeifer, Voicu ’19]:

1
2

gF ab∂̄a∂̄b(F 2R0)− 3R0 − gF ab(∇δaPb − PaPb + ∂̄a(∇Pb)) = −κ2ϕ
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Physical implications

• There are no metric non-vacuum solutions to the field equations.
◦ Field equations in case of a metric geometry F 2 = gab(x)yayb:

3rab(x)yayb − r(x)gab(x)yayb = −κ2ϕgab(x)yayb .

◦ Second derivative with respect to velocities ya and yb:

3rab(x)− r(x)gab(x) = −κ2ϕgab(x) .

⇒ 1-PDF ϕ must depend only on x , i.e., independent of velocities y .
 Unphysical velocity distribution: uniform over all (arbitrarily high) velocities!

⇒ Gravitational field of a kinetic gas always depends on the velocity of the observer.
◦ For observers whose velocity exceeds that of any gas particles:

1
2

gF ab∂̄a∂̄b(F 2R0)− 3R0 − gF ab(∇δaPb − PaPb + ∂̄a(∇Pb)) → 0

◦ Solution of the differential equation still depends on ϕ via boundary conditions.
⇒ Observers at velocities beyond gas velocities are still affected, but differently.
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Physical implications
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Example: cosmological fluid dynamics

• Most general fluid obeying cosmological symmetry:

ϕ = ϕ(t , w̃) .

• Collisionless fluid satisfies Liouville equation [MH ’15]:

0 = Lrϕ =
1
F̃

(
∂tϕ− ∂t∂w̃ F̃

∂2
w̃ F̃

∂w̃ϕ

)
.

• Example: collisionless dust fluid ϕ(x , y) ∼ ρ(x)δSx (y ,u(x)):

u(t) =
1

F̃ (t ,0)
∂t , ∂t

(
ρ(t)

√
gF (t ,0)

)
= 0 .

• Next task: solve cosmological field equations with kinetic gas.
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Quantum corrected black hole

• Schwarzschild black hole:
◦ Spherically symmetric spacetime.
◦ Vacuum solution of Einstein’s equations (general relativity).
◦ Unique solution with these properties (Birkhoff theorem).

• κ-Poincaré modification of spacetime:
◦ Interaction between particles and “quantum structure of spacetime”.
◦ Interaction depends on de Broglie wavelength (momentum).
⇝ Distinguished time direction (vector field).
⇒ κ-Minkowski spacetime has modified symmetry algebra.
◦ Black hole spacetime: assume spherically symmetric vector field.

⇒ Vector field may only have time and radial components.
◦ Modification depends on a parameter ℓ (Planck length).
◦ Spacetime approaches Schwarzschild for ℓ → 0.
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Static spherically symmetric system

• Symmetry generated by vector fields (XI) = (X0,X1,X2,X3).

⇒ Hamiltonian and 1-PDF invariant under complete lift: LX̂I
H = LX̂I

ϕ = 0 with

X̂ = Xµ∂µ − x̄ν∂µX ν ∂̄µ . (1)

⇝ Introduce new coordinates (t , r ,Θ,Φ,Ψ,E ,P,L) such that:
◦ Θ,Φ,E ,L are constant along trajectories (Noether symmetries).
◦ Hamiltonian and 1-PDF depend only on r ,P,E ,L.

• Also Hamiltonian is constant of motion: XHH = 0.
⇝ Replace P by H in new coordinates (t , r ,Θ,Φ,Ψ,E ,H,L) such that:

◦ Θ,Φ,E ,L,H are constant along trajectories.
◦ 1-PDF depends only on r ,E ,L,H.

⇒ Liouville equation becomes ∂rϕ = 0.
⇒ Most general solution to static spherically symmetric gas: ϕ = ϕ(E ,L,H).
⇝ Consider gas ϕ ∼ δ(E)δ(L)δ(H) of identical energy, angular momentum, mass.
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κ-Poincaré correction of Schwarzschild spacetime

• General κ-Poincaré modification of metric dispersion relation:

H = − 2
ℓ2 sinh2

(
ℓ

2
Zµx̄µ

)
+

1
2

eℓZµx̄µ(gµν + ZµZ ν)x̄µx̄ν . (2)

◦ Spacetime metric gµν .
◦ Unit timelike vector field Zµ satisfying ZµZ νgµν = −1.
◦ Planck length ℓ.

⇒ Static spherically symmetric case defined by functions a,b, c,d of r :

H = − 2
ℓ2 sinh2

[
ℓ

2
(−cE + dP)

]
+

1
2

eℓ(−cE+dP)

[
(−a + c2)E2 − 2cdEP + (b + d2)P2 +

L2

r2

]
. (3)

⇒ Minimal modification of Schwarzschild spacetime of mass M:

a−1 = b = c−2 = 1 − 2M
r

, d = 0 . (4)
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Example: swarm of orbiting particles

• Properties of particle ensemble:
◦ Identical angular momentum L > 0 (motion has angular component).
◦ Energy E such that particles are gravitationally bound.

⇒ Orbit oscillates between two radii R1,2.
• Calculate number of trajectories through time slice σ with R < r < R + dr .
• Plot (inverse of) relative particle density N/(dN/dr):

3.0 3.5 4.0 4.5 5.0 5.5 6.0

r

rS

1

2

3

4

5

Nκ

dNκ/dr

ℓ  0.1

ℓ  0.2

ℓ  0.3

ℓ  0.4

ℓ  0.5

ℓ  0.6

ℓ  0.7

ℓ  0.8
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r

rS
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1.0
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1.2

1.3

Nκ dNS /dr

NS dNκ/dr

ℓ  0.1

ℓ  0.2

ℓ  0.3

ℓ  0.4

ℓ  0.5

ℓ  0.6

ℓ  0.7

ℓ  0.8

⇒ κ-Poincaré modification shifts particles inward.
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◦ Identical angular momentum L > 0 (motion has angular component).
◦ Energy E such that particles are gravitationally bound.

⇒ Orbit oscillates between two radii R1,2.
• Calculate number of trajectories through time slice σ with R < r < R + dr .
• Plot (inverse of) relative particle density N/(dN/dr):
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Example: radial free fall from infinity

• Properties of particle ensemble:
◦ Identical angular momentum L = 0 (purely radial motion).
◦ Energy E such that particles are marginally bound (drop from rest at r = ∞).

• Assume constant flow rate through radial slice.
• Calculate number of trajectories through time slice σ with R < r < R + dr .
• Plot particle density dN/dr per flow rate dN/dt :
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⇒ κ-Poincaré modification decreases particle density.
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Summary
• Kinetic gas dynamics:

◦ Model many-particle systems defined by individual point mass trajectories.
◦ Consider space O of physical four-velocities (future unit timelike vectors).
◦ Define one particle distribution function as function ϕ on velocity space.
◦ Collisionless fluid satisfies Liouville equation Lrϕ = 0.

• Kinetic gases and gravity on Finsler spacetimes:
◦ Finsler gravity action obtained uniquely by using variational completion method.
◦ Kinetic gas action derived by summing over individual particle actions.
◦ Coupling of kinetic gas to gravity arises naturally.
◦ Geometry induced by gravitating kinetic gas is necessarily Finslerian.

• Applications to cosmology:
◦ Both geometry and one-particle distribution function depend on 2 coordinates.
◦ Simple Liouville equation for kinetic gas dynamics.
 Gravitational field equations still rather involved.

• Effective quantum gravity phenomenology with kinetic gases:
 Fundamental theory of quantum gravity is unknown.
⇒ Consider effective quantum gravity models instead.
◦ Effective model is small correction to general relativity.

⇒ Study observable effects of possible quantum corrections.
• κ-Poincaré modification changes matter density near black hole.
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Outlook

• Consider more general quantum corrections.

• Consider spinning black holes.
• Consider more general gases or matter distributions with less symmetry:

◦ Accretion disks and jets⇝ blazars.
◦ Tidal disruption events.
◦ Stellar wake of passing black hole and dynamical friction.

• Derive observable properties of black holes, quasars, AGN. . .
• More general applications of kinetic gas model:

◦ Cosmological solutions with non-metric geometry: Dark energy? Inflation?
◦ Weak field limit: Newtonian, post-Newtonian. . .
◦ Dynamical friction?
◦ Stellar streams?
◦ Dynamics of heterogeneous systems: stars + gas in galaxies?
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