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OF ALGEBRAICALLY SPECIAL METRICS
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(Received 26 July 1963)

Goldberg and Sachs! have proved that the alge-
braically special solutions of Einstein’s empty-
space field equations are characterized by the
existence of a geodesic and shear-free ray con-
gruence, k. Among these spaces are the plane-
fronted waves and the Robinson-Trautman metrics?®
for which the congruence has nonvanishing diver-
gence, but is hypersurface orthogonal.

In this note we shall present the class of solu-
tions for which the congruence is diverging, and
is not necessarily hypersurface orthogonal. The
only previously known example of the general
case is the Newman, Unti, and Tamburino met-
rics,® which is of Petrov Type D, and possesses
a four-dimensional group of isometries.

If we introduce a complex null tetrad (¢* is the
complex conjugate of ¢), with

ds?=2tt* +2mk,

where ¢ is a complex coordinate, a dot denotes
differentiation with respect to ¥, and the operator
D is defined by

D=38/0¢-00/0u.

P is real, whereas 2 and m {(which is defined to
be m, +im,) are complex. They are all independ-
ent of the coordinate ». A is defined by

A=Im(P~3D*).

There are two natural choices that can be made
for the coordinate system. Either (A) P can be
chosen to be unity, in which case 2 is complex,
or (B)  can be taken pure imaginary, with P dif-
ferent from unity. In case (A), the field equations
are

(3 - D*D*DS2) = 1auﬂsz|2, (2)




1. Carry out the separation of variables in the Hamilton—Jacobi equation for a particle moving in the Kerr
field (B. Carter, 1968).

Solution: In the Hamilton—Jacobi equation

it oS I8 2 0
—_—m =
B axt anck
(m is the mass of the particle, not to be confused with the mass of the central body) with g* from (104.6)
the time r and the angle ¢ are cyclic variables; they therefore enter in the action S in the form —fr + L,
where &, is the conserved energy and L denotes the component of the angular momentum along the axis of
symmetry of the field. It turns out that the variables 8 and r can also be separated. Writing § in the form

S=—dhr+ Lo+ S(r) + Sg(é, (1)

we reduce the Hamilton—Jacobi equation to two ordinary differential equations (cf. Mechanics, § 48):

2 2
dSg PP L 2,2 2 g
[dﬁ) +(a¢.‘-],s1n9m—ﬂj +a“m*cos 8= K,

ds, 2 1 z Ty g 2 2.2
[? —E[(r +a)Ey—al]l* +m*rf=—- K, (2}
where K (the separation parameter) is a new arbitrary constant. The functions Sy and §, are then determined
by simple quadratures.

The four-momentum of the particle is

;_mdx';_ ik ik a5
pr=mi-=g¥pi=—g" .

Calculating the right-hand side of this equation using (1) and (2), we get the following equations:
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These integrals are the first integrals of the eguations of motion (the equations of the geodesics). The

equation of the trajectory and the time dependence of the coordinates along the trajectory can be foumd

either from (3} to (6} or directly from the equations

dSId¥y = const, JS/JL = const,  dS/FK = const.

For the case of light rays, we must set m = 0 on the right sides of equations (3)—(6) and write @y in place
of &, (¢f. § 101), while we must replace the derivatives md/ds on the left sides by the dernivatives dfdA with
respect to the parameter A, which varies along the ray (cf. the end of § 87).

Equations (4)—(6) permit purely radial motion only along the axis of rotation of the body, as is already
clear from symmetry arguments. From these same considerations it is clear that motion in a “plane™ is
possible only if the plane is equatorial. In that case, setting 8 = 7/2 and expressing K in terms of ¢ and L
from the condition 468/4ds = 0, we obtain the eguations of motion in the form

dr _ e
™ ds T

dr 1 A 2
2 _ 2 2y e _ 2 _ T2 2.2
" [E) =3 [(r<+ a)&y — all e [{acy — LY +m~-r-],

Landau-Lifshitz
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2. Determine the radius of the circle, closest to the centre, that is a stable orbit for a particle moving m
the equatorial plane of the limiting (@ — r,/2) Kerr field (R. Ruffini and J. A. Wheeler, 1969).

Solution: Proceeding as in problem 1 of § 102, we introduce the “effective potential energy” Liir
defined from

[P + Uy — al]® — Al{al(r) — LY + m*] =0

[for & = U the right side of eq. (9) vanishes]. The radii of stable orbits are determined by the minima of dee
function U(r), i.e. by simultaneous solution of the equations U(r) = &, U(r) = 0 for U”(r) > 0. The orba
closest to the centre corresponds to U"{(rgin) = O for r < ryip. the function U(r) has no minima. As a resslis
we obtain the following values for the parameters of the motion:
(a) When L < 0 (motion opposite to the direction of rotation of the collapsar)
fmin _ 8 Zo _ _5 L _ 11
Lf 2 m 3./3° mrg 33
(b} For L > 0 (motion in the direction of rotation of the collapsar) as @ — r,/2 the radius r;, tends towasd
the radius of the horizon. Setting a = (r,/2) (1 + &), we find, for § — O

Fhao = Fionis I
.r; =3 (1 +/28), %z%[umé)ﬂ]

e !
fo . L _ 1 485
L MiFg ~3
We call attention to the fact that r,i,rh,., Temains greater than 1 throughout, i.e. the orbit does not go oursade
the horizon. This is as it should be: the horizon is a null hypersurface, and no timelike world lines of movamg
particles can lie on it
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Reversible and Irreversible Transformations in Black-Hole Physics*®

Demetrios Christodoulou
Joseph Henrvy Labovalovies, Princelon University, Princefon, New Jevsey 08540
(Received 17 September 1970)

The concepts of irreducible mass and of reversible and irrcvcrrﬁible transformations
in black holes are introduced, leading to the formula E%=um; *+ (L°/4m; %)+ p? for a
black hole of linear momentum £ and angular momentum L.

This note reports five conclusions: (1) The
mass energy of a black hole of angular momen-
tum L can be expressed in the form

m2=an, e L3 dm, 2, (1)

where m;, is the irreducible mass [geometrical
units: Liem)=(G/c3)L .. (gem®/sec); miem)

=G /" IM o (2): G /0™ =0,742 %1073 cm /g of the
black hole. (2) Insofar as one looks apart from
the atomicity of matter one can approach arbi-
trarily closely to reversible transformations
that augment or deplete the rotational contribu-
tion to the square of the mass. (3) The attainable
range of reversible transformation extends®
from L=0, m*=m? to L=m?, m*®=2m,2 (Con-
trast to the formula for mass energy as it de-
pends upon translation, E*=m®+p*, where p is
unlimited; and with the formula for the squared
mass energy of a meson!) (4) An irreversible
transformation is characterized (Fig. 1) by an in-
crease in the irreducible mass of the black hole.
(5} There exists no process which will decrease
the irreducible mass.

Roger Penrose has pointed out® a way to ex-
tract energy from a black hole endowed with angu-
lar momentum. It makes use of the “ergosphere®
(Ruffini and Wheeler; cf. Fig. 2, reproduced
from their paper?®), the region between the hori-
zon (surface of black hole; boundary of region
from which no particle or radiation can ever es-
cape) and the surface of infinite red shift (coin-
cident with the horizon only for case of the angu-
lar-momentum —free Schwarzschild black hole).
A particle of energy F, is sent from infinity into

1596

the ergosphere and decays there into (1) a parti-
cle which emerges to infinity with a rest-plus-
kinetic energy K, greater than E,, together with
(2) a particle (“rocket ejecta™) which has an en-
ergy F,, that is negative as measured at infinity
(E,=E —FK,), but positive in the local Lorentz
frame, and which is ejected into such a direction
that it is captured into the black hole, thereby
diminishing its mass. We consider the case
where all masses can be regarded as infinites-
imal compared with the mass of a black hole.

The energy £, as measured at infinity, of a
particle of angular momentum »and rest mass
i, hawving a turning point at », is given by the
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FIG. 1. Mass energy s versus angular momenturms
I. for a black hole of specified irreducible mass mg
illustrating the difference between reversible trans—
formations and irreversible transformations (which
increase the irreducible mass).
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ERGOSPHERE OF
AN EXTREME KERR HOLE
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FIG. 2. (Reproduced from Ruffini and Wheeler, Ref. 4, with their kind permission.) Decay of a particle of rest—
plus=kinetic energy E, into a particle which is captured into the black hole with positive energy as judged locally,
but negative energy £y as judged from infinity, together with a particle of rest-plus-kinetic energy £, >, which
escapes to infinity. The cross-hatched curves give the effective potential (gravitational plus centrifugal) defined
by the solution E of Eq. (2) for constant values of p, and p.

equation® (where a is an abbreviation for L)

Ef+2+ar +2m)| —dmEap .+ (2Bm—r)p Z—u3*r—2m)—a® 1% =multiple of (radial momentum)®=0. (2)

The Penrose process is most efficient when
the reduction of mass is greatest for a given re-
duction in angular momentum. To meet this re-
quirement the energy E, must be as negative as
possible. This happens at the surface of the
black hole itself,

Integration leads to the relation
(1—a®/my) 2= (2m; 2/ m3) "L
which, if condition (3) is fulfilled, is equivalent
to expression (1).
I would like to thank Professor J. A. Wheeler
»=r,=m+ (mP-a®)V'?, [3) and Dr. R. I_tufﬁ.ni for very helpful discussions
and suggestions.
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E,=[a/{r.2+a®)](p o)y

Applying the laws of conservation of energy and
angular momentum to the assimilation of parti-
cle 1 by the black hole, we arrive at the relation

(L/m)dL

de =
L [ + (2= L2 eV 2P+ L2/ m
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Introducing the black hole

According to present cosmology, certain stars
end their careers in a total gravitational collapse that
transcends the ordinary laws of physics.

Remo Ruffini and John A. Whesler
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Vela_satellltes and GRBs (60s-70s)

X-Ray: 3-12 keV
Gamma: 150-750 keV

R.W. Klebesadel, I.B. Strong, & R.A. Olson, ApJ Lett., 182, 1973

H. Gursky & R. Ruffini, AAAS, S. Francisco, 1974



The new era: the launch of Beppo Sax on April 30, 1996




The Binary Nature of GRBs

The first successful proposal of relating a GRB to an astrophysical cosmological source came from the
vision of Zoltan Paczynski and his school who identified the progenitors of short GRBs with merging
binary NS (see, e.g., Paczynski 1986; Eichler et al. 1989; Narayan, Piran and Shemi 1991, 1992; Mao &
Paczynski 1992; Narayan, Paczynski and Piran 1992). These results were later confirmed, after
BeppoSAX, by Li & Paczynski (1998, 2000, 2006); see also the review by Berger (2014).

The traditional long GRBs model, as recalled in Zhang 2018, was introduced by Rees & Meszaros
(1992); Mészaros & Rees (1997), and Woosley (1993) based on a single star, a BH, as the origin of GRBs
emitting an ultrarelativistic blast wave with Lorentz Gamma Factor of ~103 (Blandford & McKee 1976).
The kinetic energy of such ultrarelativistic blast wave released by slowing down in the circumburst
medium were assumed to give originate all GRBs emissions by synchroton at distances of 1016 - 1018
cm (Waxman & Piran 1994; Sari & Piran 1995; Sari et al. 1998).

In our approach we assume that all long GRBs, not only the short GRBs, originate from binary
systems. These binaries are composed of different combinations of CO-stars, neutron stars (NS), white
dwarfs (WD), black holes (BH) and new neutron stars VNS. Only in some of these subclasses the
presence of a BH occurs (see e.g. Ruffini et al. 2016b, 2018a; Wang et al. 2019). Three subclasses are
the BdHNe originating from a Co Core and the Companion NS binary, for selected binary periods. Each
GRB emission originates generally from mildly relativistic process in specific and different GRB
episodes.
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Fermi Gamma-ray Space Telescope

The Fermi Gamma-ray Space Telescope is a
NASA space observatory being used to perform
gamma-ray astronomy observations from low
Earth orbit. Fermi observes light in the photon
energy range of 8,000 electronvolts (8 keV) to
greater than 300 billion electronvolts (300 GeV).

It intend to perform an all-sky survey studying
astrophysical and cosmological phenomena such
' /as active galactic nuclei, pulsars, dark matter, and

%anzma ray bursts.
SSS,

r.,.r
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..........
,,,,,,,,,,

Y, Credit: NASA, Wikipedia
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Neil Gehrels Swift Observatory

Swift is NASA space satellite. It is the first
multi-wavelength observatory dedicated to the
study of gamma-ray-burst (GRB) science. Its
three instruments work together to observe
GRBs and afterglows in the gamma-ray, X-ray,
ultraviolet, and optical wavebands. Swift
monitors the sky for new GRBs with a wide-
field detector, localizes their positions onboard,
and autonomously reorients itself to observe
the new burst quickly with its other telescopes.

Credit: NASA
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Major Atmospheri Wrmma Imaging Gherenkov telescope (MAGIC)

MAGIC (Major Atmospheric Gamma Imaging : | - _' e 8 N e ok ,\"\\;.
Cherenkov Telescopes) is a system of two €8 .. . iy % /'\
" Imaging Atmospheric Cherenkov telescopes N s e e |
situated at the Roque de los Muchachos - AR
Observatory on La Palma, one of the Canary
Islands, at about 2200 m above sea level. ,
MAGIC is a system of two 17m diameter, i gt o * _ ,
F/1.03 Imaging Atmospheric Cherenkov ’ g T LR P " ol
Telescopes (IACT). They are dedicated to the S U8 4 ;
observation of gamma rays from galactic and
extragalactic sources in the very high energy > 4. & e, YT
range (VHE, 30 GeV to 100 TeV).

Credtit: Max Pfanck Institue, Wikipedia



Hard X—ray Modulation Telescope N “ﬁ
(HXMT) - e R

The Ha@ ' ofe ‘named "Insight",
|s Chl.-na"s-fr ’ .__*' I 1ere fare-three mai

' <] '5(-ray telescope
Ir :::r gy 7( l;ay félescope (5-

_gyx- ay telescc)pe (1-15 keV,

54 Cl .,,_. emn wsgenhﬁc.-pti‘ébtﬁes of Insight-HXMT are: (1)
to scan the Galactic Plane to find new transient sources and to
monitor the known variable sources, (2) to observe X-ray binaries
to study the dynamics and emission mechanism in strong
gravitational or magnetic fields, and (3) to find and study gamma-
ray bursts with its anti-coincidence Csl detectors.

Credit: Tsinghua, IHEP, CAS .




On 14 January, 2019, Fermi-GBM was triggered by GRB
190114C (Hamburg et al. 2019). Following 0.37 s the Neil
Gehrels Swift Burst Alert Telescope (BAT) was also triggered
(J.D. Gropp et al. 2019). Its distance (redshift z = 0.42) was de-
termined a few hours later by the Nordic Optical Telescope (J.

Selsing et al. 2019). On January 15, 2019, solely on the ground
of the above observations, we recognized that this source was
a BAHN I (Ruffim et al. 2019d), anticipating the possibility of
the appearance of an associated supernova (SN). The SN was
detected at the predicted time by A. Melandri et al. (2019).
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Fig. 4. The onset of the GeV radiation coincides with the onset of the
UPE. Upper: the properties of the prompt emission of GRB 190114C
in the rest frame, the UPE phase starts at 7y = 1.9 s in the rest-frame.
Lower: the arrival time of Fermi-LAT photons in the energy band of

0.1-20 GeV, the first photon arrives at fy = 1.9 s as indicated by a
vertical dotted line.




Spectrum of SN-rise
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The
Papapetrou
Wald
Solution

Details in Ruffini et al.
Apd 886 (2019) 82

st
Vi

Fig. 13. The electromagnetic field lines of the Wald solution. The red
lines show the magnetic field lines and the blue show the electric field
lines. The Magnetic field is “parallel” to the spin of the Kerr BH, so par-
allel to the rotation axis. On the polar axis up to 8 ~ &/3 electric field
lines are inwardly directed, therefore electrons are accelerated away
from the BH. For & > m/3 electric field lines are outwardly directed
and consequently protons are accelerated away from the BH.
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For simplicity, we evaluate the field in the polar direction
f=0:

aB,| ., M(cos?0+1)(r? - & cos’ 9}‘
rsinf- ————— |,

e

i By
QT ) sinfcosd \G

=

Bycos@ (—

2 M

considering an equivalent charge as
where T = r?+4a? cos? fand A = r’—2Mr+a°, being M = GM/¢? Qesr = 2 B.;._IG;;:E
and @ = a/c = J/(M c). The (outer) event horizon is located at
= (G/*)M M2 - a2). i : ic fi 1
ro = (G/e)M + VI - ) The radial component of the electric field can be approxi-
mated by the expression

(38)
For spin values e < 0.7, the electnic energy 1s well approxi-
mated by (Ruffini et al. 2019¢)

_Eek o (39)
1+ V1l -ea*

where we have introduced the notation u = M/M_ and 8 =
By/B., with

f —1.25x10%

??‘I.'?.Cj
= —, (40)
=) 40)

the critical field for vacuum polarization.




The “blackholic quantum” of energy

Table 1 Inner engine astrophysical quantities for GRBs and AGN. The
l.ﬁ -
power reported in the last row 1s the one to accelerate ultrahigh-energy

p;.u‘liclc.v.. 1e. & =&

/Te1. In both cases the parameters (mass, spin and

magnetic field) have been fixed to explain the observed high-energy

(2 GeV) luminosity

GRB (130427-like) AGN (M87%*-like)

& (Cl'g/.‘s )

221 x 10 s 0.49 day
1.68 x 10'® 1.19 x 10"
4.73 x 1036 519 x 1047

2.21 x 104 .22 x 10%3

Along BH rotation axis:

ultrahigh-energy cosmic rays
(UHECRs)

Rueda & Ruffini; EPJC 80, 300 (2020); arXiv:1907.08066
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Figure 5. The brown, deep blue, orange, green and bright blue points correspond to the bolometric (about ~ 5 times brighter
than the soft X-ray observed by Swift-XRT inferred from the fitted sychrotron spectrum) light curves of GRB 1606258, 160509A,
130427A, 190114C and 180728A, respectively. The lines are the fitting of the energy injection from the rotational energy of the
pulsar. The pulsar powers the late afterglow (t 2 5 x 10" s, white background), while in the earlier time (t < 5 x 10" s, dusty
blue background), the remaining kinectic energy of the SN ejecta plays the leading role.

J. A. Rueda et al 2020 ApJ 893 148
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Time-resolved analysis of GRB 190114C  UPE phase

Table 1. Results of the time-resolved spectral fits of GRB 190114C (CPL+BB model) from ¢ = 2.7 s(t; = 1.9s)tor = 55s (t; = 3.99 5).
The time intervals both in the rest-frame and observer’s frame, the significance (§) for each time interval, the power-law index, rest-frame cut-off
energy, rest-frame temperature, AIC/BIC, BB flux, total flux, the ratio of blackbody flux to the total flux, Fug/F\, and finally the isotropic energy
are reported in this table, The Fyy/F\, remains almost constant in each sample. The Akaike Information Criterion (AIC, Akaike 1974) and the
Bayesian Information Criterion (BIC, S i 78) can be used to select non-nested and nested models, respectively. The AIC and BIC are
defined as AIC=-2InL(#)+2k and BIC=-2InL(#)+klIn(n), respectively. Here L is the maximized value of the likelihood function for the estimated
model, k is the number of free parameters to be estimated, n is the number of observations (or the sample size). The prefer model between any two
estimated models is the one that provides the minimum AIC and BIC scores. After comparing the AIC and BIC, we find the CPL+BB model is
the preferred model than the CPL and other model. The likelihood -log(posterior) and the AIC and BIC scores are reported in column 6.

T~ rf~lrf2 « T Fan Fia

(s) (s (ke V (10°°) (10%)

Obs Rest-frame 25°") (ergem™?
1.896~3.862 418.62 -0.71'1° = 9.0'1%  -3344/6697/ 111.10' ).20 1.50e+53
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Time-resolved analysis of GRB 190114C UPE phase

- 190114C: (2.75-4.15),a=-0.51,E.=696.56keV kT=147.27keV
i}

 la
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The rotational energy extraction
from the Kerr BH: GRB 180720B
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X-ray afterglow from the spinning VNS
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FERMI-GMB, Fermi-LAT, Swift-BAT, Swift-XRT and
H.E.S.S. observations of GRB 180720B

1: SN-rise

2: UPE

3: Cavity
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Time-resolved spectral analysis of UPE phase of GRB 180720B
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The jetted structure of the GeV emission of GRB 190114 C

R. Moradi, J. Rueda, R.
Ruffini, Y. Wang, 2021




Can we see the Blackholic guantum?
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A general conclusion

We have 380 BdHNI all characterised by a cosmological redshift, an E__

larger than 10+52 erg, and an afterglow. The Afterglow Luminosities have
been obtained from the Xray observations of SWIFT. When expressed in the
rest frame of the source they fulfill a power law

Lx(t) — Axt -1.14+0.32

This determine from the BdHNI theory the initial mass and spin of the VNS.
Of these 380 BdHNI, in view of their special conical morphology and the
boresight angle of the FERMI LAT detector , only 25 BdHN are observed to
emit GeV radiation with a luminosity

[, = A t-1-19:0.04
n n

from these observations and the theory of the” Inner engine” we
can infer the BH Mass and Spin for each GeV emitting GRB.

Accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal, Today



ESA plans for a successor of Sw1ft (2023?)

et THESEUS

Transient ngh-Energw Slty and Early Universe Surveyor

THESUS is a space te!gscope mission proposal by
the European Space Agency and is designed to
vastly increase the drscovery space of the high
energy transient phenomegpa over the entirety of
cosmic history. Its primary scientific goals will
address the Early Universe ESA. Cosm:c Vision
themes “How did the Unwen:e originate and what
is made of?” and will also ‘Impact &h “The

gravitational wave Universe” —and- “The hot and
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“The new cosmology will
probably turn out to be
philosophically even more
revolutionary than relativity or
the quantum theory”

P. A. M. Dirac, Scott Lecture
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