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First observation of a binary black hole merger
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Measuring the angular momentum carried away by the
gravitational waves is more challenging:

I Q: What is the angular momentum of the system, before and
after?

I Open problem due to “supertranslation ambiguity” since the
1960’s.

I The angular momentum recorded by two distant observers of
the same system may not be the same.

I Joint work with Po-Ning Chen, Jordan Keller, Mu-Tao Wang,
and Ye-Kai Wang.
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Angular momentum

In classical mechanics, the angular momentum of a particle is
defined as

J = mr × r′.
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If we translate the origin (or the coordinate system), the angular
momentum gets shifted by linear momentum

JÕ = m(r − a)× r′ = JO − a× p.
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The special relativity can be formulated in terms of the geometry
of the Minkowski spacetime R3,1. The continuous symmetry of the
R3,1 consists of

∂

∂t
,

∂

∂x i
, x i

∂

∂x j
− x j

∂

∂x i
, t

∂

∂x i
+ x i

∂

∂t
,

which generates the time translation, spatial translation, rotation,
and Lorentz transformation respectively.
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Noether’s Theorem states that each continuous symmetry
corresponds to a conserved quantity. For a particle γ in R3,1, we
have

energy e = 〈γ′, ∂∂t 〉

linear momentum pi = 〈γ′, ∂
∂x i
〉

angular momentum Jij = 〈γ′, x i ∂
∂x j
− x j ∂

∂x i
〉

center of mass Ci = 〈γ′, t ∂
∂x i

+ x i ∂∂t 〉

If we translate the coordinate system t 7→ t +α0, x i 7→ x i +αi , the
energy and linear momentum are the same but the angular
momentum and center of mass get shifted

J ′ij = Jij + αipj − αjpi

C ′i = Ci + α0pi + αie
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Bondi-Sachs formalism

I An idealized distant observer is situated at future null infinity I +,
where light rays approach along null geodesics.

I Descriptions of I + of an isolated gravitating system include:
I Bondi-Sachs coordinates (Bondi et al. 1962, Sachs 1962)
I Penrose conformal compactification (Penrose 1965)
I Christodoulou-Klainerman (1993)
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I Bondi-Sachs and Penrose formalisms are essentially equivalent;
both of them imply the spacetimes have “peeling”–‘an idealized
property that may not hold in general, as demonstrated in the work
of Christodoulou-Klainerman (see also L. Bieri)

I We describe null infinity and distant observers using the
Bondi-Sachs formalism. Our result can be extended to
“polyhomogeneity” (Chrusciel-MacCallum-Singleton, 1995) I +

and the Christodoulou-Klainerman setting.
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Recall the Schwarzschild spacetime in Eddington-Finkelstein
coordinates:

−(1− 2m

r
)du2 − 2dudr + r2σABdx

AdxB ,

where σABdx
AdxB = dθ2 + sin2 θdφ2.

I u is the “retarded time” and r is the luminosity distance from the
black hole.

I I + corresponds to r =∞.
I u = +∞ corresponds to future timelike infinity i+ and u = −∞

corresponds to spacelike infinity i0.
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I Bondi and his collaborators postulate a coordinate system
(Bondi-Sachs) in which the metric tensor of the spacetime is given
by

−UVdu2 − 2Ududr + r2hAB(dxA + W Adu)(dxB + W Bdu).

I The spacetime is assumed asymptotically flat in the sense that
U,V → 1, hAB → σAB , W A → 0 as r →∞ and
det hAB = detσAB (determinant condition) for r large.

I Moreover, outgoing radiation condition is imposed so that all
metric coefficients U,V , hAB ,W

A can be expanded into power
series of 1

r . The assumption is relaxed to “polyhomogeneity” by
Chrusciel-MacCallum-Singleton
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I Bondi et al. found the the physics of gravitational field are
encoded in the coefficients of power series expansion.

I Energy and linear momentum are well-understood in the
Bondi-Sachs formalism. The expansion

V = 1− 2m(u, x)

r
+ O(r−2)

gives the mass aspect m(u, x) on I +.

I The Bondi-Sachs energy-momentum (E ,Pk), k = 1, 2, 3 associated
with a u =const. slice is

E (u) =

∫
S2

2m(u, ·), Pk(u) =

∫
S2

2m(u, ·)X̃ k ,

where X̃ 1 = sin θ cosφ, X̃ 2 = sin θ sinφ, X̃ 3 = cos θ are the
restriction of standard coordinate functions of R3 to S2.
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I Positivity of E (u) (Schoen-Yau 1982, Horowitz-Perry 1982).

I Bondi energy loss formula:

d

du
E (u) = −1

4

∫
S2

|NAB |2 ≤ 0,

where CAB is the shear that appears in the expansion of hAB :

hAB = σAB +
CAB

r
+ O(r2),

and NAB = ∂uCAB is called the news.

I Both CAB and NAB are traceless with respect to σAB because of
the determinant condition det hAB = detσAB .

I First theoretical study of gravitational radiation. In the linear case
is due to Trautman and the nonlinear case is due to Bondi et al.
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I The definition of angular momentum turns out to be more subtle
largely because of the convergence of expansion above and the
choice of the Bondi-Sachs coordinate.

I The corresponding Killing fields the rotation fields, which are of
higher order near infinity compared to the translating Killing fields
used in the definition of the energy and linear-momentum.

I As a result, a very precise comparison with the Minkowski
spacetime is needed in order to find an appropriate definition of
angular momentum.

I In the literature, there are many approaches to define angular
momentum (Hamiltonian, spinor-twistor, Komar type etc.), leading
to different definitions. 1

1Newmann-Penrose 1962, Winicour-Tamburino 1966, Bramson 1975,
Ashtekar-Hansen 1978, Penrose 1982, Ludvigsen-Vickers 1983,
Dray-Streubel 1984, Moreschi 1986, Dougan-Mason 1991, Rizzi 1997,
Chruściel-Jezierski-Kijowski 2002, Barnich-Troessaert 2011,
Hawking-Perry-Strominger 2017, Klainerman-Szeftel 2019, etc.
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All these definitions are of the form∫
S2

Y A(NA + · · · ),

where Y A is a rotation Killing field on S2 and NA = σABN
B ,

called the angular momentum aspect2, appears in the higher order
expansion of W A:

W A =
1

2r2
∇DCA

D +
1

r3

(
2

3
NA − 1

16
∇A(CDEC

DE )− 1

2
C A
B ∇DC B

D

)
+ O(r−4).

I All recover the Kerr angular momentum in a certain coordinate
system.

2It corresponds to Ψ1 in Newman-Penrose formalism
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Supertranslation ambiguity
I There is no preferred coordinate system (in particular no preferred

u coordinate) when radiation is present.
I What if we use a different Bondi-Sachs coordinate system?
I For any smooth function f (x) on S2, the change of coordinates

u = ū + f (x) is called supertranslation.
I Geometrically, supertranslation changes the foliation of I +.
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I We decompose f into

f = α0 +
3∑

i=1

αi X̃
i + S

where α0 +
∑3

i=1 αi X̃
i corresponds to (4-dimensional) ordinary

translation and S is referred to as pure supertranslation.
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I For a supertranslation u = ū + f (x),

m̄(ū, x) = m(ū + f , x) +
1

2
(∇BNBD)(ū + f , x)∇D f

+
1

4
(∂uNBD)(ū + f , x)∇B f∇D f +

1

4
NBD(ū + f , x)∇B∇D f

C̄AB(ū, x) = CAB(ū + f (x), x)− 2∇A∇B f + ∆f σAB

N̄AB(ū, x) = NAB(ū + f (x), x)

(3.1)

I Consequently, the total flux of energy

δE = E (+∞)− E (−∞) = −1

4

∫ +∞

−∞

∫
S2

|NAB |2

is supertranslation invariant and the energy radiated away is
without ambiguity.
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I On the other hand, under a supertranslation, the total flux of
classical angular momentum (Dray-Streubel 1984)

J̃ =

∫
S2

Y A(NA −
1

4
C D
A ∇BCDB)

transforms according to

(δJ̃)f − δJ̃ = −2

∫
S2

f Y A∇A(m(+)−m(−)),

where
m(±) = lim

u→±∞
m(u, x) ∈ C∞(S2)

are the limits of the mass aspect at i+ and i0.

I In particular, if Y A∇A(m(+)−m(−)) has any ` ≥ 2 spherical
harmonics component, the total flux of the classical angular
momentum δJ̃ can assume any value by supertranslations.3

3In fact, none of the definitions listed above were known to be
supertranslation invariant .
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I Penrose (Some unsolved problems in classical general relativity,
Seminar on Differential Geometry 102, 1982):
The very concept of angular momentum gets “shifted” by
supertranslations and “it is hard to see in these circumstances how
one can rigorously discuss such questions as the angular
momentum carried away by gravitational radiation”.

I There were efforts to eliminate supertranslation ambiguity by
choosing special null foliations (“nice sections”4 by Moreschi 1986,
“preferred cuts”5 by Rizzi 1997). However, both of them work only
in special cases6.

4with zero Bondi-Sachs momentum
5with zero electric part of the shear
6|σ̇|2 <

√
27
4

and |Ξ|2 < 16, respectively.
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Chen-Wang-Yau angular momentum

I Quasilocal angular momentum (Chen-M.-T. Wang-Y 2015) based
on the theory of quasilocal mass (M.-T. Wang-Y 2009).

I Quasilocal formulation is essential in this work on angular
momentum at null infinity. This is pointed out by Penrose in 1982
as he considered the definition of quasilocal mass and quasilocal
angular momentum as his number one and number two unsolved
problems in general relativity.

I Given a spacelike 2-surface Σ in a spacetime, extract the physical
data (σ, |H|, αH).

I For each time function X 0 = τ , we solve the following equations

3∑
i=1

∂aX
i∂bX

i = σab + ∂aX
0∂bX

0 (4.1)
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I X = (X 0,X 1,X 2,X 3) gives a configuration of Σ in R3,1. Extract
the reference data (σ, |H0|, αH0) accordingly.

I From these two sets of data, we introduce ρ and j

ρ =

√
|H0|2 + (∆τ)2

1+|∇τ |2 −
√
|H|2 + (∆τ)2

1+|∇τ |2√
1 + |∇τ |2

j =ρ∇τ −∇[sinh−1(
ρdiv(∇τ)

|H0||H|
)]− αH0 + αH

I Integration of ρ gives rise to the energy of this embedding E (X )
which depends on the two sets of data.

I The Euler-Lagrange equation by minimizing E (X ) among all
possible isometric embeddings X gives rise to the equation:

∇aja = 0. (4.2)
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I For surfaces near the null infinity, the system of equations (4.1) and
(4.2) has a unique solution, which can be calculated numerically.

I Transplant a rotation Killing field Y of R3,1 through this unique
solution, we define the quasilocal angular momentum on Σ as∫

Σ
j(Y T )

I Use the limit of quasilocal angular momentum to define total
angular momentum at null infinity

I This can be carried out for very general spacetimes. In particular,
we don’t need any peeling structure of null infinity.
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I Comparison of the classical angular momentum (Dray-Streubel
1984):

J̃ =

∫
S2

Y A(NA −
1

4
C D
A ∇BCDB).

I CWY angular momentum:

J =

∫
S2

Y A(NA −
1

4
C D
A ∇BCDB − c∇Am),

where c is given by the decomposition of the shear tensor CAB and
has never occurred in any previous definition of angular
momentum.
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I The decomposition of CAB :

CAB = ∇A∇Bc −
1

2
σAB∆c +

1

2
(ε E

A ∇E∇Bc + ε E
B ∇E∇Ac)

I c arises in the CWY angular momentum J through solving the the
system of equations (4.1) and (4.2) to obtain the gravitational
ground state.

I In particular, the additional term in the definition of J indeed
comes from the reference term in the Hamiltonian theory.
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Theorem (Chen-Keller-Wang-Wang-Y, 2021)

Suppose NAB(u, ·) = O(|u|−1−ε) as |u| → ∞. Under a
supertranslation f = α0 + αi X̃

i + S , the total flux of the CWY
angular momentum

δJ(Y ) = J(+∞,Y )− J(−∞,Y )

transforms according to

(δJ)f − δJ = αiε
ik
jδP

j for Y A = εAB∇B X̃
k ,

where δP j is the total flux of Bondi-Sachs linear momentum.

In particular, δJ is invariant under pure supertranslation and the
transformation law is the same as the special-relativistic angular
momentum.

I The assumption on NAB is needed even for the convergence of
δJ(Y ).
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Concluding remarks
We obtain a complete set of ten conserved quantities
(E ,Pk , Jk ,C k) at null infinity (all as functions of the retarded time
u and can be calculated numerically in a straight-forward way) that
satisfy the following properties:

I (E ,Pk , Jk ,C k) all vanish for any Bondi-Sachs coordinate system
of the Minkowski spacetime where there is no gravity.

I In a Bondi-Sachs coordinate system of the Kerr spacetime, Pk and
C k vanish, and E and Jk recover the mass and angular momentum.

I On a general spacetime, the total fluxes of (E ,Pk , Jk ,C k) are
supertranslation invariant.

I (E ,Pk , Jk ,C k) and their fluxes transform according to basic
physical laws under ordinary translations.

I Since these are independent of the choice of the Bondi-Sachs
coordinate, they can be computed in any Bondi-Sachs coordinate.

I Since the definition comes from quasilocal formulation, we should
be able to calculate it at a finite distance.

I We would like to explore more detailed calculation of these
conserved quantities for data coming from experiments. 30



Thank you !
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