ICRANet-ISFAHAN Astronomy Meeting, 5th November 2021

Axions in astrophysics

Pierluca Carenza OKC, Stockholm University

The strong-CP problem and axions

The strong CP problem

The QCD Lagrangian includes a CP-odd term

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{QCD}} - ar{ heta}_{ ext{QCD}} rac{oldsymbol{g}^2}{32\pi^2} \operatorname{tr} ilde{G}_{\mu
u} G^{\mu
u}$$

where $ilde{G}_{\mu
u} = rac{1}{2} \epsilon_{\mu
ulphaeta} G^{lphaeta}$ and $ar{ heta}_{ ext{QCD}} = heta_{ ext{QCD}} + \operatorname{arg} \det M_{ ext{quark}}$

Prediction of neutron electric dipole moment $d_n \approx |\bar{\theta}_{\rm QCD}| \times 10^{-15} \, {\rm e\,cm}$ Experimental bound: $|\bar{\theta}_{\rm QCD}| < 10^{-10}$ Naturalness problem, why $\bar{\theta}_{\rm QCD}$ is so small? The Peccei-Quinn mechanism

R. D. Peccei et al., Phys. Rev. Lett. 38 (1977)

PQ symmetry

 $U(1)_{PQ}$ is a chiral global symmetry that drives dynamically $ar{ heta}_{PQ}
ightarrow 0$

 $U(1)_{PQ}$ is broken at a scale f_a , the **Peccei-Quinn scale**, and the Goldstone boson is the **axion**

$$\mathcal{L}_{ax} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \xi \frac{a}{f_a} \frac{g^2}{32\pi^2} \tilde{G}^a_{\mu\nu} G^{\mu\nu a} + \frac{g_a}{2m} \bar{\Psi} \gamma^{\mu} \gamma^5 \Psi \partial_{\mu} a - \frac{g_{a\gamma}}{4} a \tilde{F}^{\mu\nu} F_{\mu\nu}$$

The minimum condition removes the CP-odd term: $ar{ heta}_{
m QCD}=0$

Axion-SM interactions

Axion-photon vertex

$$\mathcal{L}_{a\gamma} = -\frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} = g_{a\gamma} a \mathbf{E} \cdot \mathbf{B} \quad g_{a\gamma} = C_{\gamma} \frac{\alpha}{2\pi f_{a}}$$

$$a - - - \sqrt{\gamma}$$

$$\mathbf{Axion-fermion \ vertex}$$

$$\mathcal{L}_{af} = \frac{g_{af}}{2m_{f}} \bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi \ \partial_{\mu} a \quad g_{af} = C_{f} \frac{m_{f}}{f_{a}}$$

Axions and Axion-Like Particles

In any axion model

$$m_a \sim rac{1}{f_a} \quad g_{a\gamma} \sim rac{1}{f_a} \quad f_a \gg 246 \ {
m GeV}$$

The typical QCD axion is light and weakly interacting

Axion-Like Particles (ALPs) are a generalization:

- Heavy ALP searches at collider
- Superlight ALPs as fuzzy Dark Matter
- Some ALPs could be the inflaton
- ALPs in flavor-violating processes...

Motivations to study axions and ALPs

Axions and ALPs are a window on high-energy physics

This hot topic is a motivation for interdisciplinary searches

Axions and ALPs in low-mass stars

HR diagram

Diagram of stars with the same age and different initial masses

HB stars: ALP production

The main processes are Primakoff conversion

and Inverse Decay

Bound on the R parameter

M. Salaris et al., Astron. Astrophys. 420 (2004), 911-919

Observations on Globular Clusters measure the R parameter

$$R = rac{N_{
m HB}}{N_{
m RGB}} = rac{ au_{
m HB}}{ au_{
m RGB}} = 1.39 \pm 0.03$$

The duration of the HB phase can be reduced at most of $\sim 15\%$

HB star bound on heavy ALPs

PC, O. Straniero, B. Döbrich, M. Giannotti, G. Lucente and A. Mirizzi, Phys. Lett.

B 809 (2020), 135709

A small region is unconstrained: the "cosmological triangle"

Supernova axions

Core-Collapse Supernovae

For massive stars $(M > 8M_{\odot})$ the nuclear fusion produces heavy elements in an onion structure and a degenerate iron core

Iron in the core cannot be burnt and the star starts to collapse

Orders of magnitude for SNe

The SN core is an extreme environment

SN1987A: neutrino signal

From the few $ar{
u}_e p
ightarrow ne^+$ events of SN 1987A we know that...

 $\sim 10^{53}\,{
m erg}$ emitted as neutrinos with energy $\sim {\it O}(15\,{
m MeV})$ in $\sim 10\,{
m s}$

The energy-loss argument

G. Raffelt, Lect. Notes Phys. 741 (2008)

Stars produce axions which escape, draining energy from the core

Axions affect strongly the SN neutrino burst if $L_a > L_
u = 2 imes 10^{52} \, {
m erg \, s^{-1}}$

Axion-nucleon bremsstrahlung in SNe

M. S. Turner, Phys. Rev. Lett. 60 (1988)

SN axions are produced by nucleon-axion bremsstrahlung

where we have to include detailed nuclear physics and many body effects

Pion-axion conversion in SNe PC, B. Fore *et al.*, Phys. Rev. Lett. **126** (2021) no.7, 071102

SN axions are produced by pion-axion conversion

This is the leading axion production process in a SN despite the small density of pions $(\mathcal{O}(1\%))!!$

Flux from pion-axion conversion T. Fischer, PC *et al.* [arXiv:2108.13726 [hep-ph]].

The harder spectrum is due to the pion rest mass

Consequences on the SN cooling

The SN cooling is accelerated by this new process

ρ		$ar{g}_{aN} \ (imes 10^{-9})$	<i>m_a</i> (meV)	f_a (×10 ⁸ GeV)
ρ_0	only NN	0.81	21.02	2.71
	$\pi N + NN$	0.46	11.99	4.75
$ ho_0/2$	only NN	0.93	24.11	2.36
	$\pi N + NN$	0.42	10.96	5.20

Bound on the axion mass for KSVZ axions.

Detection perspectives in Cherenkov detectors work in progress

Axions absorbed via the Δ resonance

We estimate at most \sim 1000 events from a SN at 1 kpc

$$\blacktriangleright \pi^0 \rightarrow 2\gamma \rightarrow 2e^+e^-$$

$$lacksim \pi^-$$
 absorbed by nuclear capture

$$\blacktriangleright \pi^+ \to \mu^+ \to e^+$$

Axion-Like Particles from Supernovae: the photon coupling

ALP production channels

G. Lucente, PC et al., JCAP 12 (2020), 008

ALPs are coupled with photons and are produced by:

Primakoff conversion

SN1987A ALP bound

Nice complementarity with other bounds

Can ALP revitalize the SN shock?

Massive ALP could decay inside the SN revitalizing the shock

Energy deposited at $t_{\rm pb}=0.3\,{\rm s},$ the red line indicates where the ALP deposit the same energy as neutrinos

Direct signatures from the Diffuse SN ALP Background

SN axion phenomenology: conversion of light axions

DSNALPB

F. Calore, PC et al., Phys. Rev. D 102 (2020) no.12, 123005

The nucleon coupling is less constrained, larger flux with NN

DSNALPB with $g_{ap} = 1.2 imes 10^{-9}$ and $g_{a\gamma} = 5.3 imes 10^{-12} \, {\rm GeV}^{-1}$

ALP conversion into photons

D. Horns et al., Phys. Rev. D 86 (2012), 075024

The Galactic magnetic field will convert into photons both the DSNALPB and the point-like ALP flux from SN1987A (white dot)

Conversion probability for $m_a \ll E = 50\,{
m MeV}$, $g_{a\gamma} = 3 imes 10^{-13}\,{
m GeV}^{-1}$

Fermi-LAT data

Skymap of gamma-rays observed by Fermi-LAT

The ALP signal

The bound

F. Calore, PC et al., [arXiv:2110.03679 [astro-ph.HE]].

The bound is stronger than CAST and can be improved by future $\gamma\text{-}\mathrm{ray}$ measurements

Conclusions

- Axions and ALPs play a major role in astrophysics
- More on low-mass stars: energy transferred by ALPs?
- More on SNe: ALPs in hypernovae? ALPs coupled to electrons?
- Even more: ALPs and 511 keV line? ALP conversions in turbulent magnetic fields?

THANKS FOR YOUR ATTENTION