Analyzing Astronomical Data with Machine Learning Techniques

Mohammad H. Zhoolideh Haghighi

IUT, Nov 2021

Institute for Research in Fundamental Sciences

big data era.

Ground-based and space sky surveys ranging from gamma rays and X-rays, ultraviolet, optical, and infrared to radio bands is bringing astronomy into the

Ground-based and space sky surveys ranging from gamma rays and X-rays, ultraviolet, optical, and infrared to radio bands is bringing astronomy into the big data era.

© The University of Waikato Te Whare Wananga o Waikato I www.sciencelearn.org.nz

Ground-based and space sky surveys ranging from gamma rays and X-rays, ultraviolet, optical, and infrared to radio bands is bringing astronomy into the big data era.

Ground-based and space sky surveys ranging from gamma rays and X-rays, ultraviolet, optical, and infrared to radio bands is bringing astronomy into the big data era.

You can add data from Gravitational waves and Neutrinos to the above list

Volume is the amount of data

Volume is the amount of data

analysis, and visualization

Big data pose challenges for capture, cleaning, storage, processing, sharing, mining,

Volume is the amount of data

analysis, and visualization

Big data pose challenges for capture, cleaning, storage, processing, sharing, mining,

time-series data, CMB, and simulation data.

Variety points to data complexity. Astronomical data mainly include images, spectra,

RA=194.47983, DEC= 3.68035, MJD=52026, Plate= 523, Fiber=563

RA=194.47983, DEC= 3.68035, MJD=52026, Plate= 523, Fiber=563

RA=194.47983, DEC= 3.68035, MJD=52026, Plate= 523, Fiber=563

RA=194.47983, DEC= 3.68035, MJD=52026, Plate= 523, Fiber=563

data volume, LSST will generate one SDSS each night for 10 years.

Velocity means the speed of producing, transmitting, and analyzing data. Speaking of

data volume, LSST will generate one SDSS each night for 10 years.

LSST

Velocity means the speed of producing, transmitting, and analyzing data. Speaking of

Velocity means the speed of producing, transmitting, and analyzing data. Speaking of data volume, LSST will generate one SDSS each night for 10 years.

LSST

Velocity means the speed of producing, transmitting, and analyzing data. Speaking of data volume, LSST will generate one SDSS each night for 10 years.

LSST

years time is a huge challenge for astronomers.

SDSS

LSST expects to find 1000 new supernovae each night for 10 years. How to mine, classify, and target the supernovae candidates and make follow-up observations in 10

It is a golden era for Astrophysics to deal with the challenges and opportunities generated by the massive data volume, rates, and complexity from next-generation telescopes.

It is a golden era for Astrophysics to deal with the challenges and opportunities generated by the massive data volume, rates, and complexity from next-generation telescopes.

Data mining is of great importance in the big data era. It helps physicists to discover potential and useful information from the large amounts of data.

It is a golden era for Astrophysics to deal with the challenges and opportunities generated by the massive data volume, rates, and complexity from next-generation telescopes.

potential and useful information from the large amounts of data.

Data mining tasks mainly consist of summarization, classification, regression, clustering, and outlier/anomaly detection.

Data mining is of great importance in the big data era. It helps physicists to discover

What is Machine Learning?

← → C		A 🌒 💀 🕒
		Gmail Images 🔛
	Google	
	Q pv s	
	 pv sindhu pv sindhu height 	
	 pv sindhu full name pv sindhu kerala avairadhu in hindi 	
	 py sindhu photos py sindhu awards 	
India	 pv sindhu photos pv sindhu awards pv sindhu state pv sindhu images 	

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$ Parameters: θ_0, θ_1 Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2$ Goal: $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$ Parameters: θ_0, θ_1 Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$ Goal: $\min_{\theta_0, \theta_1} J(\theta_0, \theta_1)$

Boundary

False samples

True samples

Х

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Goal:

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right)^2$

 $\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0, \theta_1)$

 x_2

Unsupervised learning

Unsupervised learning

No label provided. Machine is supposed to find some structures in the raw data.

Unsupervised learning

No label provided. Machine is supposed to find some structures in the raw data.

Raw Data

Unsupervised Learning

 x_2

 x_1

ML in Astrophysics

- Spatial clustering
- Source classification with images
- Object detection
- Data cleaning
- Inferring stellar parameters from spectra
- Signal detection

k-means clustering

k-means clustering

Tundo et al. 2012

Spatial clustering

Source classification with images

Kyle W. Willett et al. 2013

https://www.galaxyzoo.org/

Neural Networks (NNs)

Object detection in images

SKA Data challenge #1

Bonaldi+ + Zhoolideh +...2020

remove noise using sigma- clipped statistics crop to 150 x 150 convert to grayscale

Morphological classification of compact and extended radio galaxies using convolutional neural networks and data augmentation techniques

Accepted 2021 May 12. Received 2021 May 11; in original form 2020 December 10

ABSTRACT

Machine learning techniques have been increasingly used in astronomical applications and have proven to successfully classify objects in image data with high accuracy. The current work uses archival data from the Faint Images of the Radio Sky at Twenty Centimeters (FIRST) to classify radio galaxies into four classes: Fanaroff-Riley Class I (FRI), Fanaroff-Riley Class II (FRII), Bent-Tailed (BENT), and Compact (COMPT). The model presented in this work is based on Convolutional Neural Networks (CNNs). The proposed architecture comprises three parallel blocks of convolutional layers combined and processed for final classification by two feed-forward layers. Our model classified selected classes of radio galaxy sources on an independent testing subset with an average of 96% for precision, recall, and F1 score. The best selected augmentation techniques were rotations, horizontal or vertical flips, and increase of brightness. Shifts, zoom and decrease of brightness worsened the performance of the model. The current results show that model developed in this work is able to identify different morphological classes of radio galaxies with a high efficiency and performance.

Viera Maslej-Krešňáková¹, Khadija El Bouchefry² and Peter Butka^{1*}

¹Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Computer Science, Technical University of Košice, Slovakia ²South African Radio Astronomy Observatory, Johannesburg, South Africa

Key words: methods: data analysis – methods: statistical– software: data analysis – radio continuum: galaxies

GAN (Generative Adversarial Network)

Enabling Dark Energy Science with Deep Generative Models of Galaxy Images

Siamak Ravanbakhsh¹, François Lanusse², Rachel Mandelbaum², Jeff Schneider¹, and Barnabás Póczos¹

¹School of Computer Science, Carnegie Mellon University ²McWilliams Center for Cosmology, Carnegie Mellon University

