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Ground-based and space sky surveys ranging from gamma rays and X-rays,
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Ground-based and space sky surveys ranging from gamma rays and X-rays,

ultraviolet, optical, and infrared to radio bands Is bringing astronomy into the
big data era.
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Ground-based and space sky surveys ranging from gamma rays and X-rays,

ultraviolet, optical, and infrared to radio bands Is bringing astronomy into the
big data era.
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You can add data from Gravitational waves and Neutrinos to the above list
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Volume is the amount of data

Big data pose challenges for capture, cleaning, storage, processing, sharing, mining,
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Variety points to data complexity. Astronomical data mainly include images, spectra,
time-series data, CMB, and simulation data.
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Variety points to data complexity. Astronomical data mainly include images, spectra,
time-series data, CMB, and simulation data.
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Variety points to data complexity. Astronomical data mainly include images, spectra,
time-series data, CMB, and simulation data.
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Variety points to data complexity. Astronomical data mainly include images, spectra,
time-series data, CMB, and simulation data.
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Velocity means the speed of producing, transmitting, and analyzing data. Speaking of
data volume, LSST will generate one SDSS each night for 10 years.
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Velocity means the speed of producing, transmitting, and analyzing data. Speaking of
data volume, LSST will generate one SDSS each night for 10 years.

LSST expects to find 1000 new supernovae each night for 10 years. How to mine,
classify, and target the supernovae candidates and make follow-up observations in 10
years time is a huge challenge for astronomers.
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It is a golden era for Astrophysics to deal with the
generated by the massive data volume, rates, and complexity from next-generation
telescopes.

IS of great importance in the big data era. It helps physicists to discover
potential and useful information from the large amounts of data.

Data mining tasks mainly consist of
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Supervised learning



Supervised learning

Hypothesis: ho(z) = 6y + o

Parameters: 8y, 0,

mi

Cost Function: J(fy,0,) = '.?}r_n' Z (hg(l.(t')) . y(,'])'l

=1

Goal: nliénilgnize J(0y,0,)
0.V



Supervised learning

Logistic Regression Example

« Boundary
« False samples

« True samples

Hypothesis:
Parameters:

Cost Function:

Goal:

h(j(;??) = 9() + 9].‘1‘-

009 91

mi

J(00,0)) = 5= >

—

minimize J(0y, 0,)
b9

(hg(z(®)) — y(1)°



Supervised learning

Hypothesis: hg(z) = 6y + 0z

Parameters: 8. 0,

mi

Cost Function: J(fp,0,) = 5 3 (hg(z'") - y(,',)z

1
=1

Logistic Regression Example

Goal: mi(l)lilgnize J(0y.0;)
LTS |
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Unsupervised learning



Unsupervised learning

No label provided. Machine is supposed to find some structures in the raw data.
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Unsupervised learning

No label provided. Machine is supposed to find some structures in the raw data.

Raw Data Qutput

Original unclustered data Clustered data




Unsupervised Learning




ML In Astrophysics

e Spatial clustering

e Source classification with images

e Object detection

e Data cleaning

* Inferring stellar parameters from spectra

e Signal detection



(@) Data objects
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(@) Data objects
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Spatial clustering
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Source classification with images

Sb Sc
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Is the galaxy simply smooth and rounded,
with no sign of a disk?

Could this be a disk viewed edge-on?

}

How rounded is it?

n n = ¢ Is there a sign of a bar feature through

Does the galaxy have a bulge at its centre? the centre of the galaxy?
If so, what shape? | 5

How tightly wound do the spiral arms appear? <€
How many spmx arms are there? How prominent is the central bulge,
' compared to the rest of the galaxy?

v

Is there anything odd?

Is there any sign of a spiral

arm pattern?

Is the odd feature a ring, or is the
galaxy disturbed or irregular?

bl
ol s

Kyle W. Willett et al. 2013 https://www.galaxyzoo.org/
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Neural Networks (NNs)

Hidden Hidden
layer 1 layer 2
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Object detection in images
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remove noise using sigma- clipped statistics

crop to 150 x 150

convert to grayscale

Morphological classification of compact and extended radio galaxies using
convolutional neural networks and data augmentation techniques

Viera Maslej-Kre$nakova', Khadija El Bouchefry? and Peter Butka'*

L Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Computer Science, Technical University of KoSice, Slovakia
2South African Radio Astronomy Observatory, Johannesburg, South Africa

Accepted 2021 May 12. Received 2021 May 11; in original form 2020 December 10

ABSTRACT

Machine learning techniques have been increasingly used in astronomical applications and have proven to successfully clas-
sify objects in image data with high accuracy. The current work uses archival data from the Faint Images of the Radio Sky at
Twenty Centimeters (FIRST) to classify radio galaxies into four classes: Fanaroff-Riley Class I (FRI), Fanaroff-Riley Class II
(FRII), Bent-Tailed (BENT), and Compact (COMPT). The model presented in this work 1s based on Convolutional Neural Net-
works (CNNs). The proposed architecture comprises three parallel blocks of convolutional layers combined and processed for
final classification by two feed-forward layers. Our model classified selected classes of radio galaxy sources on an independent
testing subset with an average of 96% for precision, recall, and F1 score. The best selected augmentation techniques were rota-
tions, horizontal or vertical flips, and increase of brightness. Shifts, zoom and decrease of brightness worsened the performance
of the model. The current results show that model developed in this work is able to identify different morphological classes of
radio galaxies with a high efficiency and performance.

Key words: methods: data analysis — methods: statistical— software: data analysis — radio continuum: galaxies
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mput: | (None, 64,64, 1)
output: | (None, 64,64, 1)

L '

mput_1: InputLayer

input: (None, 64,64, 1) input: (None, 64,64, 1)
conv2d 2: Conv2D conv2d 3: Conv2D
output: | (None,61,61,64) output: | (None, 63, 63, 64)
: : iput: | (None,61,61,64) . _ input: | (None, 63,63, 64) , input: (None,64,64,1)

max_pooling2d_1: MaxPooling2D _ max_pooling2d_2: MaxPooling2D conv2d_1: Conv2D A
output: | (None, 30, 30, 64) output: | (None, 31,31, 64) output: | (None, 31,31, 128)
input: | (None, 30, 30, 64) mput: | (None, 31, 31, 64) input: | (None, 31,31, 128)

flatten_2: Flatten _ flatten_3: Flatten _ flatten_1: Flatten

output: (None, 57600) output: (None, 61504) output: (None, 123008)

mput: | [(None, 123008), (None, 57600), (None, 61504)]

concatenate 1: Concatenate

output: (None, 242112)

'

mput: | (None, 242112)

dropout_1: Dropout
output: | (None, 242112)

'

input: | (None, 242112)

dense 1: Dense

output: (None, 128)

4
input: | (None, 128)

dense 2: Dense

output: (None, 4)




GAN (Generative Adversarial Network)

Real Face

Discriminator

Deep Convolutional Network (DCN)

LEDIS

—> Real or Fake ?

!

Generator

Deconvolutional Network (DN)

Generated Face

source

destination

Random noise

Coarse styles copied




Enabling Dark Energy Science with Deep
Generative Models of Galaxy Images

Siamak Ravanbakhsh!, Francois Lanusse?, Rachel Mandelbaum?, Jeff Schneider!, and Barnabds Péczos!

'School of Computer Science, Carnegie Mellon University
*McWilliams Center for Cosmology, Carnegie Mellon University




Hands on part: Classifying RR Lyrae variables and main sequence stars

RR Lyrae variables are pulsating horizontal branch stars of spectral class A or F, with a mass of around half
the Sun's.
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Hands on part: Classifying RR Lyrae variables and main sequence stars

RR Lyrae variables are pulsating horizontal branch stars of spectral class A or F, with a mass of around half
the Sun's.
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RR Lyrae variables are pulsating horizontal branch stars of spectral class A or F, with a mass of around half

Hands on part: Classifying RR Lyrae variables and main sequence stars

the Sun's.
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the Sun's.
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Real Label

Positive Negative

True False Y TP
Positive Positive Positive * Precision = =——
Y TP + FP
Predicted (TP) (FP)
Label False True
Negative BNELELOCE ) EGC
(FN) (TN)
2, TP Y TP + TN

Recall = —— Accuracy =

>. TP + FN 2. TP +FP+FN+ TN



