

New high precision tests of General Relativity

Claus Lämmerzahl 4. November 2021

ICRANet-Isfahan astronomy meeting online, 5. - 5. November 2021

CENTER OF APPLIED SPACE TECHNOLOGY AND MICROGRAVITY

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions

Foundation of space-time geometry (Ehlers, Pirani, Schild 1972; Will 1993)

► Licht Uniqueness of light propagation → metrics, local Special Relativity

c=const Minkowski metrics η_{ab} many Tests $10^{-15}-10^{-30}$

Foundation of space-time geometry (Ehlers, Pirani, Schild 1972; Will 1993)

► Licht Uniqueness of light propagation → metrics, local Special Relativity

- independence of c from velocity of source: $\leq 10^{-11}$
- isotropy of $c :\leq 10^{-17}$
- Kennedy-Thorndike: $\leq 10^{-17}$
- time dilation: $\leq 10^{-8}$

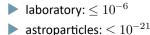
Foundation of space-time geometry (Ehlers, Pirani, Schild 1972; Will 1993)

- ► Licht Uniqueness of light propagation → metrics, local Special Relativity
- Universality of Free Fall

 \exists coordinate system so that \forall freely falling particles

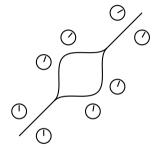
bulk matter Schlamminger et al, 2003: $\eta \le 10^{-13}$, MICROSCOPE $\eta \le 10^{-14}$

- particles with spin
- charged particles
- anti-particles



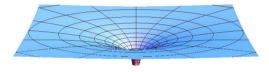
Foundation of space-time geometry (Ehlers, Pirani, Schild 1972; Will 1993)

- ► Licht Uniqueness of light propagation → metrics, local Special Relativity
- Universality of Free Fall
- Compatibility no superluminal velocity


v < c

Foundation of space-time geometry (Ehlers, Pirani, Schild 1972; Will 1993)

- ► Licht Uniqueness of light propagation → metrics, local Special Relativity
- Universality of Free Fall
- Compatibility no superluminal velocity
- Uniqueness of clocks or uniqueness of quantum mechanics or Local Position Invariance


clocks show twin paradox but same ticking rate

comparison of different clocks Ashby et al, 2018: $\alpha \le 5 \cdot 10^{-7}$ anti-clocks, Galileo

Foundation of space-time geometry (Ehlers, Pirani, Schild 1972; Will 1993)

- ► Licht Uniqueness of light propagation → metrics, local Special Relativity
- Universality of Free Fall
- Compatibility no superluminal velocity
- Uniqueness of clocks or uniqueness of quantum mechanics or Local Position Invariance



Einstein Equivalence Principle

Foundation of space-time geometry (Ehlers, Pirani, Schild 1972; Will 1993)

- ► Licht Uniqueness of light propagation → metrics, local Special Relativity
- Universality of Free Fall
- Compatibility no superluminal velocity
- Uniqueness of clocks or uniqueness of quantum mechanics or Local Position Invariance

Einstein Equivalence Principle

Result: Gravity is described by a curved Riemannian space-time $g_{\mu\nu}$

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

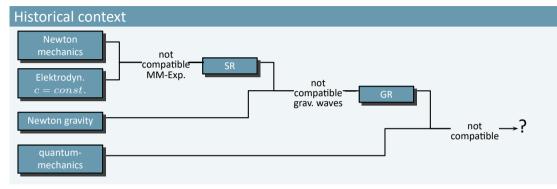
Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions



The Einstein field equations

History of space-time theories

Implications of GR

- tiny Solar system effects: perihelion shift., deviation of light, redshift, grav. time delay., ...
- ▶ take field equations serious: Black Holes → triumph of theory !!!
- then perhaps also: time travel, worm holes, ... ?

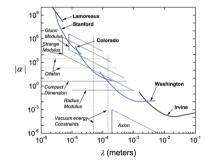
General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

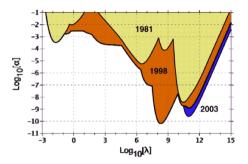
Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo


Outlook: Measurement of a new clock effect?

Unresolved questions



Test of Newton potential

$$U=rac{GM}{r}\left(1+lpha e^{-r/\lambda}
ight)={\sf Newton}+{\sf Yukawa}$$
 deviation

small scales

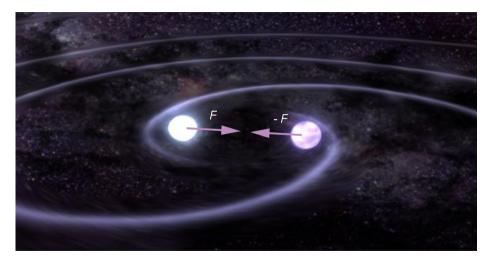
large scales (LLR, ephemerides, ...)

Test of Newton potential

SME (Kostelecky, PRD 2005): anisotrope Newton potential

$$U = \frac{MG}{r} \left(1 + \frac{r^i c_{ij} r^j}{r^2} \right) = \text{Newton} + \text{anisotropy}$$

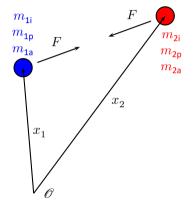
Experiment


- atom interferometry (Müller et al, PRL 2007)
- LLR (Battat, Chandler & Stubbs, PRL 2007)

result

$$|c_{ij}| \leq 10^{-5} \dots 10^{-9}$$

Active and passive gravitational mass

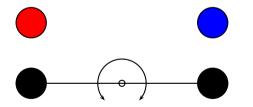

Gravitationally bound 2-body system (Bondi, RMP 1957)

 \Rightarrow self-acceleration of center-of-mass if

$$C_{\rm 21} = \frac{m_{\rm 2a}}{m_{\rm 2p}} - \frac{m_{\rm 1a}}{m_{\rm 1p}} \neq 0$$

violation of actio = reactio for gravity

▶ $C_{12} = 0 \Rightarrow$ masses of same weight create the same gravitational field, independent of their composition \leftrightarrow another equivalence principle


Experiment for testing $m_{\rm a}=m_{\rm p}$

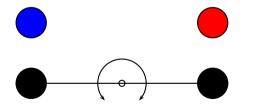
measurement of gravitational attraction

Schritt 1: two masses with equal weight $m_{p1} = m_{p2}$

Schritt 2: test of equality of active gravitating masses with torsion balance

experimental setup: torsion balance with identical test masses is sensitive to $m_{a1}
eq m_{a2}$

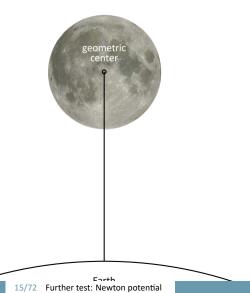
no effect has been observed: $C_{12} \leq 5 \cdot 10^{-5}$ (Kreuzer, PR 1868)


Experiment for testing $m_{\rm a}=m_{\rm p}$

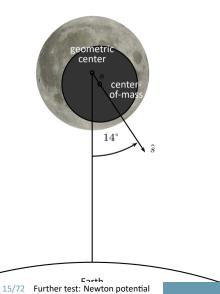
measurement of gravitational attraction

Schritt 1: two masses with equal weight $m_{p1} = m_{p2}$

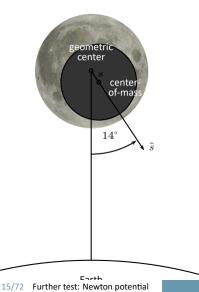
Schritt 2: test of equality of active gravitating masses with torsion balance


experimental setup: torsion balance with identical test masses is sensitive to $m_{a1}
eq m_{a2}$

no effect has been observed: $C_{12} \leq 5 \cdot 10^{-5}$ (Kreuzer, PR 1868)



Experiment for testing $m_{a} = m_{p}$



Experiment for testing $m_{\sf a}=m_{\sf p}$

Experiment for testing $m_{a} = m_{p}$

measurement of self-acceleration of center-of-mass

$$\frac{F_{\rm self}}{F_{\rm EM}} = C_{\rm AI-Fe} \frac{M_{\rm M}}{M_{\oplus}} \frac{r_{\rm EM}^2}{r_{\rm M}^2} \frac{s}{r_{\rm M}} \frac{\rho}{\Delta \rho} \hat{s}$$

tangential component of force increases orbital velocity

$$rac{\Delta\omega}{\omega}=6\pirac{F_{\mathsf{self}}}{F_{\mathsf{EM}}}\sin14^\circ$$
 per month

with LLR $rac{\Delta \omega}{\omega} \leq 10^{-12}$ per month

 $\Rightarrow \qquad C_{\text{AI-Fe}} \leq 7 \cdot 10^{-13}$

Bartlett & van Buren, PRL 1986

possible improvement with new LLR- and Moon Orbiter data

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

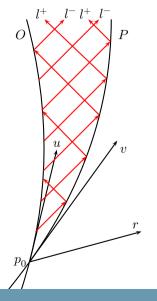
Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions



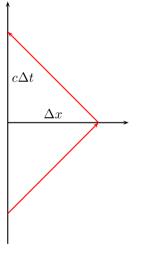
Standard clock, distance, and rotation

based on (freely falling) particles and light rays (unique)

Standard clock

GR defines what is a good clock (Perlick, GRG 1987) atomic clocks are good clocks

Standard clock, distance, and rotation


based on (freely falling) particles and light rays (unique)

Standard clock

GR defines what is a good clock (Perlick, GRG 1987) atomic clocks are good clocks

unique determination of distance

 $\Delta x = c \, \Delta \tau$

Standard clock, distance, and rotation

based on (freely falling) particles and light rays (unique)

Standard clock

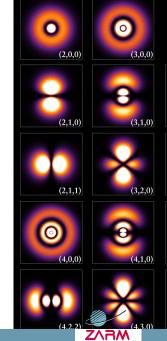
GR defines what is a good clock (Perlick, GRG 1987) atomic clocks are good clocks

unique determination of distance

 $\Delta x = c \, \Delta \tau$

rotation

GR defines rotation (Pirani, BAP 1965) gyroscopes show exactly this rotation

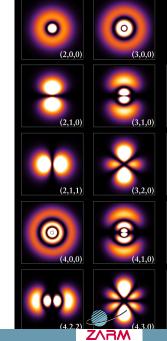


What is a good clock?

definition: a freely falling observer measures vanishing relative acceleration for freely falling particles

one can show: with very high precision an atomic clock is a standard clock:

- only in the vicinity of Black Holes space-time curvature may become so large that it influences the energy levels of atoms according to Ra_B^2 (a_B is the Bohr radius, Parker, Pimentel, PRD 1982) \rightarrow then atomic clocks are no standard clocks
- space-time curvature on Earth is very small \Rightarrow leads to modification of the order $\frac{\delta\nu}{\nu} \sim 10^{-42}$ far beyond experimental reach


What is a good clock?

definition: a freely falling observer measures vanishing relative acceleration for freely falling particles

one can show: with very high precision an atomic clock is a standard clock:

- only in the vicinity of Black Holes space-time curvature may become so large that it influences the energy levels of atoms according to Ra_B^2 (a_B is the Bohr radius, Parker, Pimentel, PRD 1982) \rightarrow then atomic clocks are no standard clocks
- space-time curvature on Earth is very small \Rightarrow leads to modification of the order $\frac{\delta\nu}{\nu} \sim 10^{-42}$ far beyond experimental reach

based on such standard clocks we define the gravitational redshift, gravitational time delay, gravitomagnetic clock effect, ...

Outline

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions

Summary and outlook

Summary GR

equation for the gravitational field: Einstein field equations

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^4}T_{\mu\nu}$$

equations of motion of pointlike particles in the gravitational file: geodesic equation

$$0 = \frac{d^2 x^{\mu}}{ds^2} + \left\{ \begin{array}{c} \mu \\ \rho \sigma \end{array} \right\} \frac{dx^{\rho}}{ds} \frac{dx^{\sigma}}{ds}$$

 $\{ {}^{\mu}_{\rho\sigma} \}$ is the Christoffel symbol, and $ds = \sqrt{g_{\mu\nu} dx^{\mu} dx^{\nu}}$ for extended objects: Mathisson-Papapetrou-Dixon equation

time keeping with standard clock = proper time, defined through space-time geometry

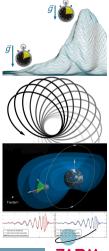
$$s = \int ds$$

kann operational definiert werden als Standarduhr (Perlick, GRG 1987), mit großer Genauigkeit realisiert durch Atomuhren

Summary tests of GR

effects on light rays


- deviation of light (VLBI, Gaia) Eddington
- gravitational lensing Twin Quasar Q0957+561
- shadow of Black Holes (EHT) EHT-Kollaboration 2019


orbital effects

- perihelion shift (Mercury) Le Verrier
- Lense-Thirring effect: spin-orbit-coupling (LAGEOS) Ciufolini
- back reaction (binary systems) Hulse-Taylor, gravitational waves

effects on extended bodies

- Schiff effect: spin-spin-coupling (GP-B) Everitt
- effects on clocks / effects on frequencies
 - gravitational redshift Pound-Rebka, GP-A, Galileo
 - gravitational time delay Cassini
 - gravitomagnetic clock effect
- gravitational waves Abbott et al 2016
- + all SR effects: time dilation, Doppler effect, Sagnac effect, length

21/72

Outline

General Relativity

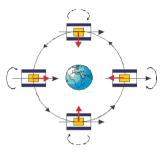
- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

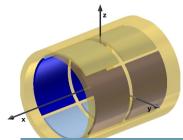
Outlook: Measurement of a new clock effect?


Unresolved questions

Summary and outlook

MICROSCOPE: The Mission

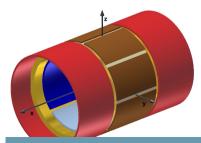
- French space mission with participation of CNES, ESA, ZARM and PTB
- Mission goal: Test of Equivalence Principle with an accurary of $\eta = 5\cdot 10^{-16}$
- Mission overview:
 - Micro-satellite of CNES Myriade series
 - Drag–free satellite
 - Sun–synchronous orbit
 - Altitude about 800 km
 - Mission lifetime of 1 year
- Payload:
 - Two high–precision capacitive differential accelerometers
 - Science sensor: Ti and Pt test mass
 - Reference sensor: two Pt test masses
- Test of accelerometers at ZARM drop tower
- modeling

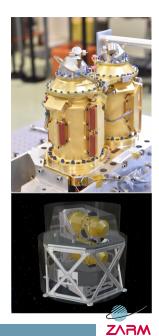


Main payload T-SAGE

T-SAGE = Twin-Space Accelerometer for Gravity Experiment

- developed and built by ONERA
- two differential acceleromters, each containing two test masses
- test mass made by PTP
- each test mass is controlled by 18 electrodes

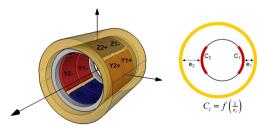


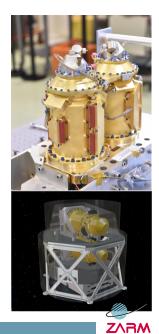


Main payload T-SAGE

T-SAGE = Twin-Space Accelerometer for Gravity Experiment

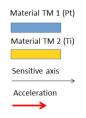
- developed and built by ONERA
- two differential acceleromters, each containing two test masses
- test mass made by PTP
- each test mass is controlled by 18 electrodes

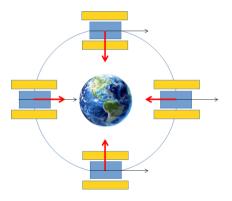




Main payload T-SAGE

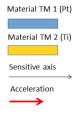
T-SAGE = Twin-Space Accelerometer for Gravity Experiment

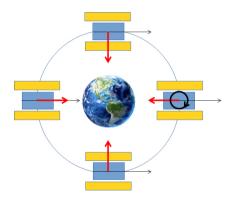

- developed and built by ONERA
- two differential acceleromters, each containing two test masses
- test mass made by PTP
- each test mass is controlled by 18 electrodes



MICROSCOPE – mission scenario

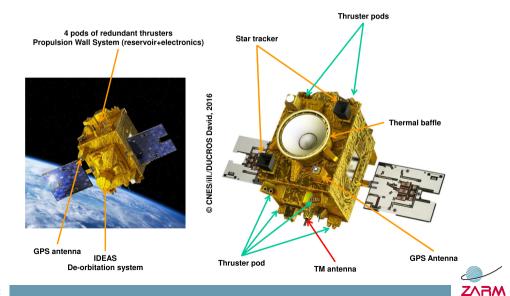
- servo-controlled test masses with identical centers of gravity
- two pairs of test masses
 - SUREF = 2 test masses of Pt
 - SUEP = 1 test mass Pt (+ 10% Rh), one Ti (+ 6%Al + 1% V)
- measurement of differential acceleration between test masses
- AOCS: drag free motion

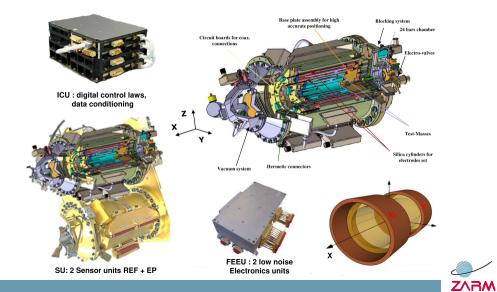




MICROSCOPE – mission scenario

- servo-controlled test masses with identical centers of gravity
- two pairs of test masses
 - SUREF = 2 test masses of Pt
 - SUEP = 1 test mass Pt (+ 10% Rh), one Ti (+ 6%Al + 1% V)
- measurement of differential acceleration between test masses
- AOCS: drag free motion
- spinning mode

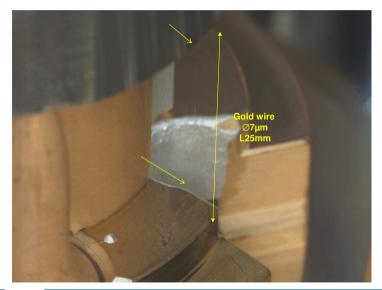

$$\omega_\eta = \omega_{\rm orbit} + \omega_{\rm spin}$$



MICROSCOPE - the satellite

26/72

MICROSCOPE - main payload


27/72

MICROSCOPE - the test masses

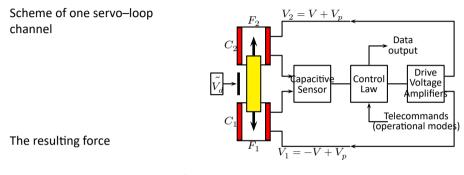
- \blacktriangleright μ m machining precision
- material (Pt, Ti) very expensive
- manufactured by PTB

MICROSCOPE - the Gold wire

Gold wire needed for discharging

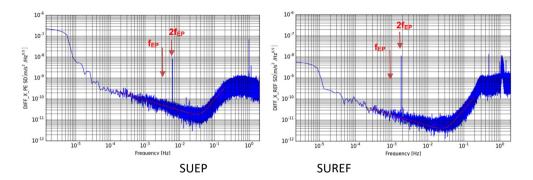
induces damping

all instrument photos from ONERA



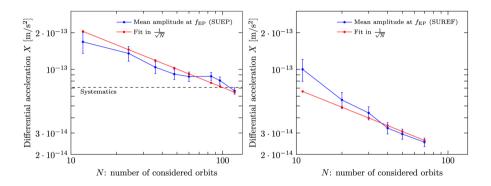
MICROSCOPE - the

MICROSCOPE - the capacitive sensor


$$F = F_1 + F_2 = \frac{1}{2} \left(\nabla C_2 \left(V_2 - V_p \right)^2 + \nabla C_1 \left(V_1 - V_p \right)^2 \right) = m \Gamma_{\text{elec}}$$

the resultant force F is proportional to V:

$$m\Gamma_{\rm elec} = F = 2\,m\,\nabla C\,V_p\,V$$


MICROSCOPE - the measurement

power spectral density of differential accelerometer along sensitive axis for two different spin periods gravity gradient signal appears at $2f_{\rm EP}$

MICROSCOPE - the measurement

Evolution of the mean amplitude of the FFT of the differential signal along sensitive axis at ω_η as a function of integrating times.

PRL 119, 231101 (2017)

ZVYW

First result

MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle

Pierre Touboul,^{1,*} Gilles Métris,^{2,†} Manuel Rodrigues,^{1,‡} Yves André,³ Ouentin Baghi,² Joël Bergé,¹ Damien Boulanger,¹ Stefanie Bremer,⁴ Patrice Carle,¹ Ratana Chhun,¹ Bruno Christophe,¹ Valerio Cipolla,³ Thibault Damour,⁵ Pascale Danto,³ Hansjoerg Dittus,⁶ Pierre Fayet,⁷ Bernard Foulon,¹ Claude Gageant,¹ Pierre-Yves Guidotti,³ Daniel Hagedorn,⁸ Emilie Hardy,¹ Phuong-Anh Huynh,¹ Henri Inchauspe,¹ Patrick Kayser,¹ Stéphanie Lala,¹ Claus Lämmerzahl,⁴ Vincent Lebat,¹ Pierre Leseur,¹ Françoise Liorzou,¹ Meike List,⁴ Frank Löffler,⁸ Isabelle Panet,⁹ Benjamin Pouilloux,³ Pascal Prieur,³ Alexandre Rebray,¹ Serge Revnaud,¹⁰ Benny Rievers,⁴ Alain Robert,³ Hanns Selig,⁴ Laura Serron,² Timothy Sumner,¹¹ Nicolas Tanguy,¹ and Pieter Visser¹² ¹ONERA, chemin de la Hunière, BP 80100, F-91123 Palaiseau Cedex, France ²Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Géoazur, 250 Avenue Albert Einstein, F-06560 Valbonne, France ³CNES, 18 Avenue Edouard Belin, F-31401 Toulouse, France ⁴ZARM. Center of Applied Space Technology and Microgravity. University of Bremen. Am Fallturm, D-28359 Bremen, Germany ⁵IHES, Institut des Hautes Études Scientifiques, 35 route de Chartres, F-91440 Bures-sur-Yvette, France ⁶DLR, Köln Headquarters, Linder Höhe, 51147 Köln, Germany ⁷LPTENS, École Normale Supérieure (PSL Research University), 24 Rue Lhomond, 75231 Paris Cedex 05, France ⁸PTB, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany ⁹IGN, Institut Géographiaue National, 73 Avenue de Paris, F-94160 Saint Mandé, France ¹⁰Laboratoire Kastler Brossel, UPMC-Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, F-75005 Paris, France ¹¹Blackett Laboratory, Imperial College London, United Kingdom ¹²Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands (Received 12 May 2017; revised manuscript received 20 September 2017; published 4 December 2017) According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The *MICROSCOPE* satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision

> level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives $\delta(Ti, Pt) = [-1 \pm 9(stat) \pm g(stst)] \times 10^{-15}$ (*Ip* statistical uncertainty) for the titanium-platinum Edivos parameter characterizing the

PRL 119, 231101 (2017)

 $\eta({\rm Ti},{\rm Pt}) \le (-1 \pm 9({\rm stat}) \pm 9({\rm syst})) \cdot 10^{-15}$

ZVBW

First result

MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle

Pierre Touboul,^{1,*} Gilles Métris,^{2,†} Manuel Rodrigues,^{1,‡} Yves André,³ Quentin Baghi,² Joël Bergé,¹ Damien Boulanger,¹ Stefanie Bremer,⁴ Patrice Carle,¹ Ratana Chhun,¹ Bruno Christophe,¹ Valerio Cipolla,³ Thibault Damour,⁵ Pascale Danto,³ Hansjoerg Dittus,⁶ Pierre Fayet,⁷ Bernard Foulon,¹ Claude Gageant,¹ Pierre-Yves Guidotti,³ Daniel Hagedorn,⁸ Emilie Hardy,¹ Phuong-Anh Huynh,¹ Henri Inchauspe,¹ Patrick Kayser,¹ Stéphanie Lala,¹ Claus Lämmerzahl,⁴ Vincent Lebat,¹ Pierre Leseur,¹ Françoise Liorzou,¹ Meike List,⁴ Frank Löffler,⁸ Isabelle Panet,⁹ Benjamin Pouilloux,³ Pascal Prieur,³ Alexandre Rebray,¹ Serge Reynaud,¹⁰ Benny Rievers,⁴ Alain Robert,³ Hanns Selig,⁴ Laura Serron,² Timothy Sumner.¹¹ Nicolas Taneuv,¹ and Pieter Visser¹²

¹ONERA, chemin de la Hunière, BP 80100, F-91123 Palaiseau Cedex, France ²Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Géoazur,

250 Avenue Albert Einstein, F-06560 Valbonne, France

TMEC 19 Anomus Edonard Polin E 21401 Toulouse, France

ity, University of Bremen, my F-91440 Bures-sur-Yvette, France öln, Germany

homond, 75231 Paris Cedex 05, France

⁸PTB, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany ⁹IGN, Institut Géographique National, 73 Avenue de Paris, F-94160 Saint Mandé, France

¹⁰Laboratoire Kastler Brossel, UPMC-Sorbonne Université, CNRS,

ENS-PSL Research University, Collège de France, F-75005 Paris, France

¹¹Blackett Laboratory, Imperial College London, United Kingdom

¹²Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands (Received 12 May 2017; revised manuscript received 20 September 2017; published 4 December 2017)

According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The *MICROSCOPE* satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives $\delta(Ti, Pt) = [-1 \pm 9(\text{stat}) \pm 9((\text{syst})] \times 10^{-15} (1e \text{ statistical uncertainty}) for the titanium–foltatinum Edivos parameter characterizing the$

PRL 119, 231101 (2017)

 $\eta({\rm Ti},{\rm Pt}) \le (-1 \pm 9({\rm stat}) \pm 9({\rm syst})) \cdot 10^{-15}$

ZVYW

First result

MICROSCOPE Mission: First Results of a Space Test of the Equivalence Principle

Pierre Touboul,^{1,*} Gilles Métris,^{2,†} Manuel Rodrigues,^{1,‡} Yves André,³ Ouentin Baghi,² Joël Bergé,¹ Damien Boulanger,¹ Stefanie Bremer,⁴ Patrice Carle,¹ Ratana Chhun,¹ Bruno Christophe,¹ Valerio Cipolla,³ Thibault Damour,⁵ Pascale Danto,³ Hansjoerg Dittus,⁶ Pierre Favet,⁷ Bernard Foulon,¹ Claude Gageant,¹ Pierre-Yves Guidotti,³ Daniel Hagedorn,⁸ Emilie Hardy,¹ Phuong-Anh Huynh,¹ Henri Inchauspe,¹ Patrick Kayser,¹ Stéphanie Lala,¹ Claus Lämmerzahl,⁴ Vincent Lebat,¹ Pierre Leseur,¹ Françoise Liorzou,¹ Meike List,⁴ Frank Löffler,⁸ Isabelle Panet,⁹ Benjamin Pouilloux,³ Pascal Prieur,³ Alexandre Rebray,¹ Serge Revnaud,¹⁰ Benny Rievers,⁴ Alain Robert,³ Hanns Selig,⁴ Laura Serron,² Timothy Sumner,¹¹ Nicolas Tanguy,¹ and Pieter Visser¹²

¹ONERA. chemin de la Hunière, BP 80100, F-91123 Palaiseau Cedex, France ²Université Côte d'Azur, Observatoire de la Côte d'Azur, CNRS, IRD, Géoazur,

250 Avenue Albert Einstein, F-06560 Valbonne, France

ouse France

ity. University of Bremen. F-91440 Bures-sur-Yvette, France öln. Germany

homond. 75231 Paris Cedex 05. France

⁸PTB. Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany

⁹IGN. Institut Géographiaue National. 73 Avenue de Paris. F-94160 Saint Mandé. France

¹⁰Laboratoire Kastler Brossel, UPMC-Sorbonne Université, CNRS,

ENS-PSL Research University, Collège de France, F-75005 Paris, France

¹¹Blackett Laboratory, Imperial College London, United Kingdom

result of new analysis will be published Eneineering. Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands

(Received 12 May 2017; revised manuscript received 20 September 2017; published 4 December 2017)

According to the weak equivalence principle, all bodies should fall at the same rate in a gravitational field. The *MICROSCOPE* satellite, launched in April 2016, aims to test its validity at the 10^{-15} precision level, by measuring the force required to maintain two test masses (of titanium and platinum alloys) exactly in the same orbit. A nonvanishing result would correspond to a violation of the equivalence principle, or to the discovery of a new long-range force. Analysis of the first data gives $\delta(Ti, Pt) = [-1 \pm 9(stat) \pm 1)$ $9(\text{syst}) \times 10^{-15}$ (1 σ statistical uncertainty) for the titanium-platinum Eötyös parameter characterizing the

Outline

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions

Summary and outlook

1st laboratory test

- Mössbauer effect
- 22.5 m height difference at Jefferson "Tower" at Harvard
- > Pound & Rebka, 1960, accuracy $\sim 1\%$

Space test: The mission Gravity Probe A

first order gravitational effect

$$\nu(x_1) = \left(1 - \frac{U(x_1) - U(x_0)}{c^2}\right) \nu(x_0)$$

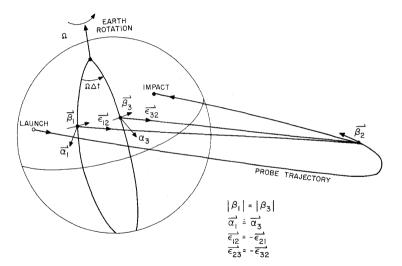
or

$$\frac{\Delta\nu}{\nu}=-\frac{\Delta U}{c^2}$$

hypothetical deviation or hypothetic dependence on clock

$$\frac{\Delta\nu}{\nu} = -(1+\alpha)\frac{\Delta U}{c^2}$$

Precise measurement of gravitational redshift: $|\alpha| \le 10^{-4}$ (Vessot, Levine, et al, GRG 1978, PRL 1980)

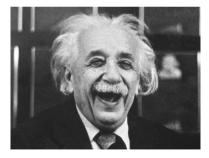

precise test of Doppler effect

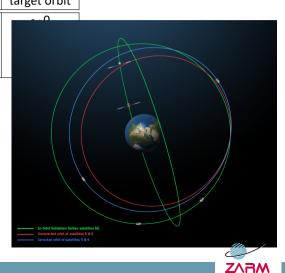
GP A H-maser

The mission Gravity Probe A

Galileo 5 and 6

	after launch	after correction	target orbit
e	0.233	0.1561	\sim 0
a [km]	26,192	27,977	29,900
i	49.774	49.7212	55
$r_a-r_p~\mathrm{[km]}$	11,681	8,730	\sim 0




Galileo 5 and 6

	after launch	after correction	target orbit]
e	0.233	0.1561		
a [km]	26,192	27,977		\wedge —
i	49.774	49.7212		
r_a-r_p [km]	11,681	8,730	/	
			De Obst Vallesies Gatte De Obst Vallesies Gatte De Consisted abit of atomic Consisted abit of atomic	1931 S
39/72				

Galileo 5 and 6

	after launch	after correction	target orbit
e	0.233	0.1561	
a [km]	26,192	27,977	
i	49.774	49.7212	
$r_a - r_p$ [km]	11,681	8,730	/

Galileo clocks: Passive Hydrogen Maser

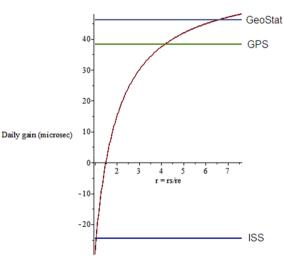
- Ground Performance: 7 × 10⁻¹⁵ flicker floor
 @ > 10000 s
- \blacktriangleright Actively Temperature Stabilized to $\Delta T < 0.5~{\rm K}$
- \blacktriangleright *T*-sensitivity: $\Delta \nu / \nu = 2 \times 10^{-14} / {
 m K}$
- Passive magnetic shielding
- B-sensitivity: $\Delta \nu / \nu = 3 \times 10^{-13} / {\rm G}$

PHM: Passive Hydrogen Maser by SpectraTime mass = 18 kg

Galileo clocks: Rubidium Atomic Frequency Standaed

- Ground Performance: 2×10^{-14} flicker floor @ > 10000 s
- used as secondary clock only

RAFS: Rubidium Atomic Frequency Standard mass = 3.3 kg



Galileo clock effects

Dominant effects:

- gravitational redshift
 - ightarrow clocks tick faster
- special relativistic time dilation
 - ightarrow clocks tick slower

$$d\tau = \left(1 + \frac{U}{c^2} - \frac{1}{2}\frac{v^2}{c^2}\right)dt$$

Galileo redshift

Redshift

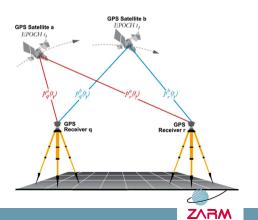
redshift between perigeum and apogeum

$$\frac{\Delta\nu}{\nu} = (1+\alpha)\frac{GM}{c^2}\left(\frac{1}{r_{\rm p}} - \frac{1}{r_{\rm a}}\right) \quad \Rightarrow \quad \Delta t = 2(1+\alpha)\frac{\vec{r}\cdot\vec{v}}{c^2}$$

experimental parameter: lpha

• with the maximum difference of radius of ~ 8730 km one gets the maximum redshift $\frac{\Delta\nu}{\nu}\approx 5\cdot 10^{-11}$

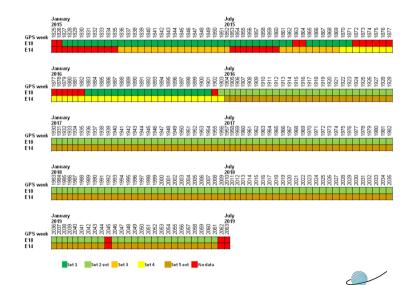
corresponds to 370 ns time gain per revolution (nominal ~ 0.5 ns)



Clock data

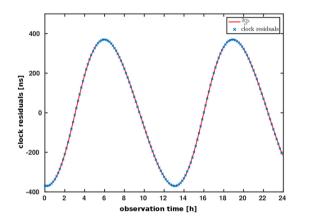
Pseudo range for measured times (similar for carrier phase)

$$\begin{split} P^s_{r,f}(t) &= \|\vec{r}_r(t) - \vec{r}^s(t-T)\| + c\left(\Delta t_r(t) - \Delta t^s(t-T)\right) \\ &+ c\left(d_{r,f}(t) - d^s_r(t-T)\right) + I^s_{r,f} + T^s_{r,f} - m^s_{r,P,f}(t) + \epsilon^s_{r,P,f}(t) \end{split}$$


- \vec{r}^s , \vec{r}_r satellite and receiver position Δt_r , Δt^s clock bias; $d_{r,f}$, d_f^s instrument delays $I_{r,f}^s$, T_r^s iono- & tropospheric corrections $m_{P,r,f}^s$ multipath errors; $\epsilon_{P,r,f}^s$ noise
- Measurement of signal travel times = pseudo range
- clock corrections depend, among others, on orbit information: 30 cm → 1 ns

Clock data

Clock and orbit products from 2015 on are made available to us by ESOC

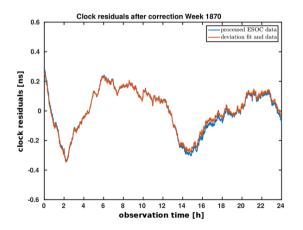

- ▶ 30 s sampling on clock $\leftrightarrow i$ / 300 s sampling on orbit
 - Customized reprocessing to needs of data analysis (E.
 Schönemann, F.
 Dillsner, T. Springer from ESOC)

ZVYW

Data without relativistic "correction"

GPS week 1870; day 0

- relativistic effects included
- gravitational redshift
 + Doppler


$$\Delta t = 2\frac{\vec{r}\cdot\vec{v}}{c^2}$$

 $ightarrow \sim$ 370 ns modulation amplitude

Data without relativistic "correction"

GPS week 1870; day 0

- relativistic effects modeled and removed by ZARM
- comparison to final ESOC products
- provides a check of basic common understanding
- variations of ~ 0.5 ns due to systematic effects

Least squares fit model

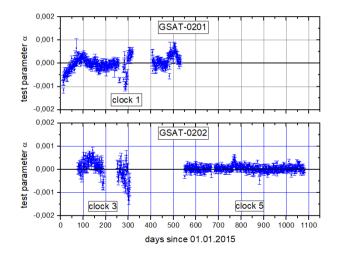
$$S = \sum_{i=1}^n \left(\epsilon_i - \frac{\alpha}{\alpha} \left(\int_{\text{path}} \left(\frac{GM_\oplus}{rc^2} \left(1 - \frac{J_2 a_\oplus}{2r^2} \left(\frac{3z^2}{r^2} - 1 \right) \right) + \frac{v^2}{2c^2} \right) dt_i \right) - a_0 - a_1 t_i \right)$$

with

- ϵ_i clock residuals
- J_2 axially symmetric quadruple moment of Earth (flattening)
- $a_0 \ {\rm clock} \ {\rm offset} \ {\rm parameter}$
- a_1 clock drift parameter

to be determined α

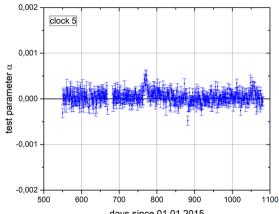
working on Bayesian data analysis


Availability of clock and orbit data

- 5 different transmitting clockd: 4 PHM and 1 RAFS
- only data from 3 PHM included in analysis

Clock no.	Sat	Clock	Start	End	Length [days]	Gaps [days]	performance
clock 1	E18	PHM B	11 Jan 15	15 Jun 16	521	101	ok
clock 2	E18	PHM A	02 Jul 16	16 Dec 17	533	11	not nominal
clock 3	E14	PHM B	19 Mar 15	04 Nov 15	231	59	ok
clock 4	E14	RAFS	05 Nov 15	02 Jul 16	241	0	no PHM
clock 5	E14	PHM A	03 Jul 16	16 Dec 17	532	15	ok

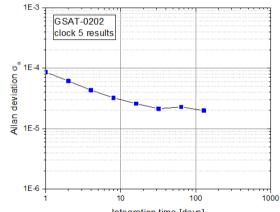
Daily results for α from all clocks



Clock 5 results

E14 / PHM A

- n = 510 days
- constant positive bias
- systematics better behaved than for clock 1 and 3

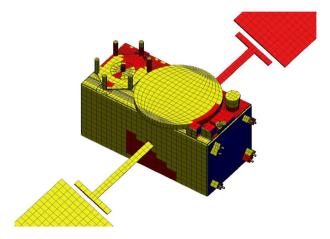


days since 01.01.2015

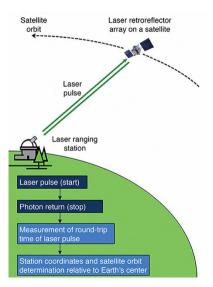
Clock 5 results

- 🕨 E14 / PHM A
- \blacktriangleright n = 510 days
- constant positive bias
- systematics better behaved than for clock 1 and 3

Integration time [days]

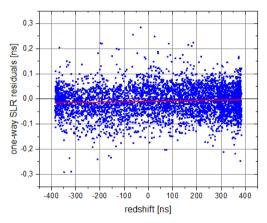

Cause of systematic bias ?

- Possible direct systematics on satellite clock
 - temperature effects
 - magnetic fields
- Possible indirect systematics on orbit/clock solution
 - orbit error by mismodelling solar radiation pressure SRP
 - inclusion of tidal potentials of Sun and Moon
- Possible systematics on ground clocks ?
 - daily modulation possible, to be spectrally separated from orbital period + averaging over many ground clocks


Satellite model

finite surface element model of Galileo with shadow

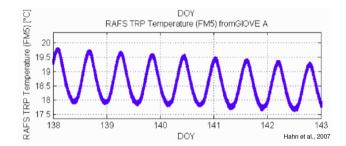
Satellite model, SRP, and SLR



- independent orbit information from SLR
- reprocessings of orbit
- clock with improved SRP models
- reduction of SLR residuals
- lacktriangleright orbit understood within ± 2 mm

Correction of remaining orbit systematics

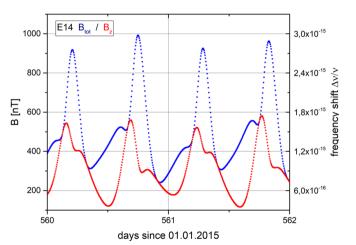
- convert SLR residuals to clock bias
- fit redshift model to SLR data to determine systematic contribution
- correct alpha result accordingly



global estimate for clock 5: non vanishing small correlation: 1.5×10^{-5}

Temperature systematics

- temperature variation for RAFS on GIOVE A
- temperature data for PHMs on Doresa + Milena not available



- PHM clocks on FOC actively stabilized to $\Delta T = \pm 0.5$ K
- \blacktriangleright temperature sensitivity of PHM: $\Delta
 u /
 u = 2 imes 10^{-14}$ /K (Rochat et al., 2012)
- \blacktriangleright temperature driven by solar illumination ightarrow disentangling from redshift signal over one year
- uncertainty estimate: $\Delta lpha = \pm 2 imes 10^{-5}$

Magnetic fields

- no magnetometers on board of satellites
- adopt IGRF model of Earth's magnetic field
- clock sensitivity: $\Delta \nu / \nu = 3 \times 10^{-13} \text{/G}$ (Rochat et al., 2012)
- ambiguity in sign / clock bias field orientation
- rerun analysis for worst case: total amplitude, both signs
- $\Delta \alpha = \pm 8 \times 10^{-6}$ systematic uncertainty in α

Other possible systematics considered

- Ground clocks ?
 - potential 24 h or 12 h systematics
 - decorrelate from orbit signal (13 h) within days
- Phase wind-up ?
 - considered not critical using nominal satellite attitude
- Atmospheric effects ?
 - ionosphere free combination, but maybe higher order corrections

Error budget and systematic uncertainties

- combining all systematic uncertainties for each clock (* = max/min interval)
- final result taken only from clock 5
- combined error derived from posterior of a Bayesian approach
- \blacktriangleright redshift only: $\alpha = (2.8 \pm 3.2) \cdot 10^{-5}$, factor 5 improvement

($\alpha \pm \sigma_{SE}$) x 10 ⁻⁵	clock 1	clock 3	clock 5	
n	371	167	510	
statistics	-1.4 ± 0.5	7.7 ± 1.2	2.9 ± 0.4	
Orbit	-2.2 ± 0.5	-8.1 ± 0.9	-1.5 ± 0.9	
Magnetic field	$0 \pm 0.8^{*}$	$0 \pm 0.8^{*}$	$0 \pm 0.8^{*}$	
Temperature	0 ± 2.0*	0 ± 2.0*	0 ± 2.0*	
Total	-3.6 ± 1.4	-0.4 ± 1.9	1.4 ± 1.6	

Summary

- Improvement of GB-A by a factor 5 with Galileo Satellites 5 and 6 Herrmann et al, PRL 2018, Delva et al, PRL 2018
- Accuracy is limited by systematic effects: Temperature, magnetic fields, orbit model
- Main systematic due to mismodeling of solar radiation pressure SRP, could be improved
- Ongoing: study of SLR systematics, refinement of analysis
- Test case for future GNSS + Fundamental Physics missions

Outline

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

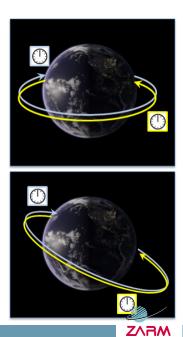
Unresolved questions

Summary and outlook

The gravitomagnetic clock effect on satellites

special cases

 for counterpropagating circular motion: α = -1 effect to first order in J (Cohen and Mashhoon 1993)


$$\Delta s_{\rm gm} = 4\pi \frac{J}{Mc^2} \sqrt{\frac{r}{r-3}} + \mathcal{O}(J^2) \approx 4\pi \frac{J}{Mc^2}$$

for large \boldsymbol{r}

general but identical Keplerian orbits (Mashhoon et al 2001)

$$\Delta s_{\rm gm} = 4\pi \frac{J}{Mc^2} \frac{(3e^2 + 2e + 3)\cos i - 3e - 2}{(1 - e^2)^{\frac{3}{2}}}$$

but we need different orbits

General gravitomagnetic clock effect

observable for the gravitomagnetic clock effect for arbitrary orbits

New observable (Hackmann & CL, PRD 2014)

for two geodesics in Kerr space-time: define a new observable

$$\Delta s_{\rm gm}(J):=s_1(\pm 2\pi;J)+{\color{black}\alpha}\,s_2(\pm 2\pi;J)$$

lpha is given such that the usual gravitoelectric effects cancel

α can be calculated from orbital data: compute energies E_n, angular momenta L_{z,n}, Carter constants K_n (all depend on angular momentum J)
 determine E_n(0), L_{z,n}(0), and K_n(0) by setting J = 0 and s_n(2π; 0). α can be determined through Δs_{gm} = 0 for J = 0

$$0 = \Delta s_{\rm gm}(J=0) = s_1(\pm 2\pi;0) + \alpha s_2(\pm 2\pi;0)$$

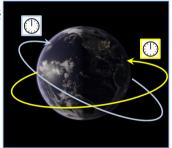
and, therefore,

$$\alpha = -\frac{s_1(\pm 2\pi;0)}{s_2(\pm 2\pi;0)}$$

Application to GNSS satellites

it is possible to measure the gravitomagnetic clock effect using two satellites in arbitrary geodesic orbits with clocks with stabilities of about 10^{-14} over $10^4\,{\rm s}$

Galileo: circular orbit with radius r_G = 29593 km, inclination 56° from equatorial plane
 COMPASS: circular orbit with radius of r_C = 42157 km, inclination ~ 0° from equatorial plane then


$$\alpha \approx -\sqrt{\left(\frac{a_1}{a_2}\right)^3} - \frac{3}{2}\sqrt{\frac{a_1}{a_2^5}} \left(\frac{a_1(1+e_2^2)}{1-e_2^2} - \frac{a_12(1+e_1^2)}{1-e_1^2}\right) \approx -0.58\delta$$

gravitomagnetic clock effect

$$\Delta s_{\rm gm} = s_G(2\pi;J_{\rm Earth}) + \alpha s_C(2\pi;J_{\rm Earth}) \approx -7.46\times 10^{-8}~{\rm s}$$

 analysis should be generalized to real satellite orbits: complex gravitational field of Earth should be taken into account

- discussion of requirements on tracking of satellites and the deviation from ideal orbit (Mashhoon et al 1999)
- signals between satellites
- can also be applied to pulsar timing, with two pulsars orbiting a black hole 64/72

Clock requirements and magnitude of the effect

effects from analyical expressions

GNSS satellite pair	inclination [°]	eccentricity	Δau [ns]
Galileo vs Glonass	56 / 64.8	0/0	48
Gakileo vs geostationary	56/0	0/0	75
Glonass vs geostationary	64.8 / 0	0/0	99
Galieo: E11 vs E14	56 / 50	0/0.16	11

- \blacktriangleright measure absolute 10 100 ns difference in one orbit (~ 50000 s)
- ig> current clocks show technical drifts of several μ s per day
- clocks with improved frequency accuracy required + careful calibration (optical clocks, cold atom clocks, iodine ?)

Orbit requirements from analytical expessions

special cases

exact solution for circular + equitorial orbit

$$\tau_{\pm} = \frac{2\pi}{\omega_0} \sqrt{1 - \frac{3GM}{r} \pm 2\frac{J}{Mc^2}\omega_0}$$

derive from this the variation with respect to r and φ

$$\tau_+ - \tau_- = 4\pi \frac{J}{Mc^2} + \sqrt{\frac{r^3}{GM}} \Delta \varphi + \sqrt{\frac{r}{GM}} \Delta r$$

similar results for the case of general Keplerian orbits

 $\Rightarrow \Delta r$ uncertainty below 40 $\mu{\rm m}$ are required for 10 - 100 ns accuracy currently under investigation

how does this translate to required precision of orbit products (currently at few cm level)

how does this change when integrating over 1000 s of orbits

Outline

General Relativity

- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?

Unresolved questions

Summary and outlook

Inconsistencies between GR and quantum mechanics

singularities: general prediction of GR - singularity theorems

- GR: pointlike singularities Black Holes, Big Bang
- QM: uncertainty relation forbids pointlike phenomena

notion of time

- QM: time is an external parameter
- GR: time is dynamical

information paradox

- objects and information disappear in Black Holes
- Hawking radiation is thermal

zero point energy

- QM: zero point energy (Casimir effect)
- GR: all types of energy are sources for gravity
- problem of cosmological constant

conceptual inconsistency

- GR is local
- QM is global

Open questions

fundamental problems

- Übergang von Quantenmechanik zu klassischer Mechanik
- fundamentale Dekohärenz, Messprozess
- equivalence principles (inertia = passive gravitational mass (weight) = active gravitational mass)
- constancy of constants

"technical" problems

- renormalization
- self force
- quantum field theory in curved space-time
- "smoking guns"
- 🕨 Dark Matter
- Dark Energy
- still to understand completely
- Black Holes
- Neutron Stars
- cosmic radiation

Outline

General Relativity

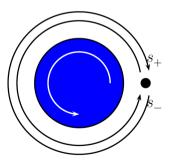
- The geometrical structure
- The gravitational field
- Further test: Newton potential
- Clocks, distances, and rotation

Consequences: GR and further tests

Improved test of the Universality of Free Fall with MICROSCOPE

Improved test of the gravitational redshift with Galileo

Outlook: Measurement of a new clock effect?


Unresolved questions

Summary and outlook

Take-home-messages

Experiments thre is no single test contradicting SR or GR within the experimental errors
 Missing not yet measured: gravitomagnetic clock effect
 Theory big problem of theory: incompatibility of GR and QM
 Observation unknown: Dark Matter

Thank you for your attention

Thanks to

- Hansjörg Dittus
- 🕨 Eva Hackmann
- 🕨 Sven Herrmann
- 🕨 Jutta Kunz
- 🕨 Meike List
- 🕨 Fritz Merkle
- Jürgen Müller
- Volker Perlick
- Ernst Rasel
- Piet Schmidt

- DFG Research Training Group "Models of Gravity"
- Center of Excellence "Quantum Frontiers"
- DFG Collaborative Research Center "Relativistic Geodesy" geo-Q
- German Research Foundation DFG
- German Space Agency DLR
- Center of Excellence QUEST
- German Israeli Foundation
- IRAP-PhD

