SPH simulations of the Induced Gravitational Collapse

Laura Marcela Becerra B. Pontificia Universidad Católica de Chile - ICRANet Collaborators: C. Fryer, C. Ellinger, J. Rueda, and R. Ruffini

ICRANet-ISFAHAN Astronomy Meeting

November 3, 2021

Introduction

The Induced Gravitational Collapse (IGC) Ruffini, et. al, ApJ 2001, Rueda & Ruffini, ApJ 2012, Ruffini et al, ApJ 2016

Progenitor IGC model

L. Becerra

Introduction

Smooth particle hydrodynamic (SPH) of the IGC scenario

Accretion algorithm: The particle is accreted if:

• It is inside the star accretion radius:

$$|\vec{r_j} - \vec{r_s}| < R_{\rm j,acc} = \min\left(\xi \frac{2GM_s}{v_{js}^2 + c_j^2}, h_j\right)$$

• It is gravitational bounded to the star:

$$\frac{GM_sm_j}{|\vec{r_j}-\vec{r_s}|} > \frac{1}{2}m_j|\vec{v}_j-\vec{v}_s|^2$$

• It isn't circularizing:

$$|(\vec{r}_j - \vec{r}_s) \times (\vec{v}_j - \vec{v}_s)| < \sqrt{GM_sR_{j,acc}}$$

$$M_{s,new} = M_s + \sum_j m_j$$

$$\vec{p}_{s,new} = M_s \vec{v}_s + \sum_j m_j \vec{v}_j$$

$$\frac{L_{s,new}}{M_{s,new}} = \frac{L_s \vec{v}_s + \sum_j m_j (\vec{r}_{s,j} \times \vec{v}_{s,j})}{M_s}$$

Initial set up

SPH-Initial set up

1D core-collapse code: Fryer et. al , ApJ 1999

L. Becerra

SPH Simulations I

IGC SPH simulations November 3, 2021

6 / 17

$Snapshots \ IGC \ scenario$

L. Becerra, C. Ellinger, C. Fryer, R. Rueda and R. Ruffini, ApJ 871, 2019

 $L. \ Becerra$

Results Referece simulation

Snapshots IGC scenario

L. Becerra, C. Ellinger, C. Fryer, R. Rueda and R. Ruffini, ApJ 871, 2019

Snapshots IGC scenario

L. Becerra, C. Ellinger, C. Fryer, R. Rueda and R. Ruffini, ApJ 871, 2019

L. Becerra

Mass Accretion Rate on the ν -NS and the NS companion

Mass Accretion Rate on the ν -NS and the NS companion

 $L. \ Becerra$

Changing the SN energy L. Becerra et al, ApJ 871,2019

Changing the SN energy L. Becerra et al, ApJ 871,2019

Changing the Orbital Period and NS initial mass

L. Becerra et al, ApJ 2019

Binary System fate Motion of the binary stars (L. Becerra et al, ApJ 871, 2018)

Binary System fate Motion of the binary stars (L. Becerra et al, ApJ 871, 2018)

Changing the CO_{core} progenitor

 $L. \ Becerra$

Snapshots surface density: CO_{core} with $M_{zams} = 30 M_{\odot}$

Snapshots surface density: CO_{core} with $M_{zams} = 30 M_{\odot}$

NS critical mass and gravitational collapse Rotating NS configurations - F. Cipolletta et al, Phys. D. 2015

The evolution of the NS gravitational mass is given by:

$$\dot{M}_{\rm NS} = \frac{\partial M_{\rm NS}}{\partial M_b} \dot{M}_B + \frac{\partial M_{\rm NS}}{\partial J_{\rm NS}} \dot{J}_{\rm NS} \quad (1)$$

$$3.25$$
Secular Instability Limit
$$M_{\rm NS}^{\rm crit} = M_{\rm NS}^{l=0} (1 + c_1 j_{\rm NS}^{c_2})$$

$$\frac{M_b}{M_{\odot}} = \frac{M_{\rm NS}}{M_{\odot}} + \frac{13}{200} \left(\frac{M_{\rm NS}}{M_{\odot}}\right)^2 \left(1 + \frac{j_{\rm NS}^{1.7}}{137}\right)$$

$$\dot{\psi}_{\rm S}^{0} 2.50$$

$$\dot{\psi}_{\rm S}^{0} 2.25$$

$$\dot{\psi}_{\rm S}^{0} 2.25$$

$$\dot{\psi}_{\rm S}^{0} 2.25$$

$$\dot{\psi}_{\rm S}^{0} 2.25$$

$$\dot{\psi}_{\rm S}^{0} 2.25$$
Mass - Shedding Limit
$$J_{\rm NS} / M_{\rm NS}^{2} \approx 0.7$$
We assume:
$$\frac{dJ_{\rm NS}}{dt} = \xi l(R_{\rm in}) \frac{dM_{\rm b}}{dt}$$
1.50

where $\xi < 1$ is a parameter that accounts for the efficiency of the angular momentum transfer.

IGC SPH-simulations

 $c J_{\rm NS} / (G M_{\odot}^2)$

NS critical mass and gravitational collapse L. Becerra et al., ApJ 871, 2018

L. Becerra

NS critical mass and gravitational collapse L. Becerra et al., ApJ 871, 2018

 $L. \ Becerra$

NS critical mass and gravitational collapse L. Becerra et al., ApJ 871, 2018

L. Becerra

NS critical mass and gravitational collapse L. Becerra et al., ApJ 871, 2018

L. Becerra

Consequences on GRB analysis

Y. Wang, J. Rueda, et al, ApJ 874, 2019

GRB 180728A/SN 2018fip

GRB 130427A/SN 2013cq

THANK YOU