Contribution ID: 15

Spontaneous Peccei-Quinn symmetry breaking renders sterile neutrino, axion and χ boson to be candidates for dark matter particles

Wednesday, 18 May 2022 15:00 (15 minutes)

We study the Peccei-Quinn (PQ) symmetry of the sterile right-handed neutrino sector and the gauge symmetries of the Standard Model. Due to four-fermion interactions, spontaneous breaking of these symmetries at the electroweak scale generates top-quark Dirac mass and sterile-neutrino Majorana mass. The top quark channels yield massive Higgs, W^{\pm} and Z^{0} bosons. The sterile

neutrino channel yields the heaviest sterile neutrino Majorana mass, sterile Nambu-Goldstone

axion (or majoron) and massive scalar $\chi {\rm boson.}$ Four-fermion operators effectively induce

their tiny couplings to SM particles. We show that a sterile QCD axion is the PQ solution to the strong CP problem. The lightest and heaviest sterile neutrinos ($m_N^e \sim 10^2$ keV and $m_N^\tau \sim 10^2$ GeV), a sterile QCD axion ($m_a < 10^{-8}$ eV, $g_{a\gamma} < 10^{-13}$ GeV⁻¹) and a Higgs-like χ boson ($m_\chi \sim 10^2$ GeV) can be dark matter particle candidates, for the constraints of their tiny couplings and long lifetimes inferred from the W-boson decay width, Xenon1T and precision fine-structure-constant experiments. The axion and χ boson couplings to SM particles are

below the values reached by current laboratory experiments and astrophysical observations for directly or indirectly detecting dark matter particles.

Primary author: Prof. XUE, She-Sheng (ICRANet, Physics Department, Sapienza University of Rome)
Presenter: Prof. XUE, She-Sheng (ICRANet, Physics Department, Sapienza University of Rome)
Session Classification: Afternoon session