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Gamma-Ray Bursts: the most extreme
phenomena in the Universe

Long gamma-ray burst Short gamma-ray burst
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The power of long GRBs for cosmology

Most luminous and remote phenomena in the Universe, with
isotropic-equivalent radiated energies in X-gamma rays up to

more than 10°* erg released in a few tens of seconds and a
redshift distribution extending to at least z = 9-10.
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Shedding light on the early Universe with GRBs

d A major goal of contemporary cosmology is to reveal the emergence of
primordial stars and galaxies, and the contemporaneous reionization of
the intergalactic medium, in the first billion years of the Universe
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Shedding light on the early Universe with GRBs
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Shedding light on the early Universe with GRBs

A statistical sample of high—-z GRBs can provide
fundamental information:

* measure independently the cosmic star-formation rate, even
beyond the limits of current and future galaxy surveys

» directly (or indirectly) detect the first population of stars (pop lll)
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* Detecting and studying primordial invisible galaxies

050904 F850LP |060522 F110W| 060927 F110W
2=6.29: Mg > 28.86 | Z=5.11: Mg >28.13 Z7=547: M5 > 28.57

080913 F160W| 090423 F125W+F160W| 0904298 F160
Z=6.73; Myg > 27.92 | Z=8:23:M,5>30.29 | Z=9.4; M,5> 28.49

——j
Tanvir+12 —_— =

Robertson&Ellis12

Even JWST and ELTs surveys will be not able to probe the faint end of the
galaxy Luminosity Function at high redshifts (z>6-8)



* Detecting and studying primordial invisible galaxies
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Detecting and studying primordial invisible galaxies
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Future GRB missions (late‘20s and ‘30s)

Probing the Early Universe with GRBS
Multi-messenger and time domain'Astrophysics

The transient high energysky
Synergy with next generation arge Facilities (E-ELTFSKATCTAS
ATHENA, GW and neutrino detectors)

d THESEUS (studied for ESA Cosmic Vision / M5), HiZ-
GUNDAM (JAXA, under study), TAP (idea for NASA probe-
class mission), Gamow Explorer (proposal for NASA
MIDEX): prompt emission down to soft X-rays, source
location accuracy of few arcmin, prompt follow-up with
NIR telescope, on-board REDSHIFT



Lead Proposer (ESA/M5): Lorenzo Amati (INAF — OAS Bologna, Italy)

Coordinators (ESA/M5): Lorenzo Amati, Paul O’Brien (Univ. Leicester,
UK), Diego Gotz (CEA-Paris, France), A. Santangelo (Univ. Tuebingen, D),
E. Bozzo (Univ. Genéve, CH)

Payload consortium: Italy, UK, France, Germany, Switzerland, Spain,
Poland, Denmark, Belgium, Czech Republic, Slovenia, Ireland, NL, ESA
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Future GRB missions: the case of THESEUS
(led by Italy; ESA/M5 Phase-A study, re-proposed for M7)

THIS BREAKTHROUGH WILL BE ACHIEVED BY A MISSION CONCEPT
OVERCOMING MAIN LIMITATIONS OF CURRENT FACILITIES

Set of innovative wide-field monitors

with unprecedented combination of

broad energy range, sensitivity, FOV
and localization accuracy
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THIS BREAKTHROUGH WILL BE ACHIEVED BY A MISSION CONCEPT
OVERCOMING MAIN LIMITATIONS OF CURRENT FACILITIES

Set of innovative wide-field monitors

with unprecedented combination of

broad energy range, sensitivity, FOV
and localization accuracy

On-board autonomous fast follow-up in
optical /NIR, arcsec location and redshift
measurement of detected
GRB/ transients




Shedding light on the early Universe with GRBs
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Shedding light on the early Universe with GRBs

_ First Stars
@ ®
o0y 0° o R ] _ v .

) o e) . '@ THESEUS (3.5yrs)| e
o2 %00 - _® GRBs (1998-2020) =
J.... [ X ]

e ° o ®

Log(L)

e Theseus 3.45 years
47 o 2005-2020 -

46 I NS N (N (N (N N NN N SN S S
1 2 3 45 6 7 8 910111213 14

—_
(9]

||||,||‘ lllud Lo

01 2 3 45 6 7 8 9 1011 12 13 14 15
Redshift




Star formation history, GRB accurate localization and NIR, X-
orimordial galaxies ray, Gamma-ray characterization, redshift

ELT TMT GMT
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fraction evolution,
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* Independent measure of

cosmic SFR at high-z

(possibly including pop-Ill stars)
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A statistical sample of high-z GRBs will give access to star formation in the
faintest galaxies, overcoming limits of current and future galaxy surveys

THESEUS Consortium 2021



* Detecting and studying primordial invisible galaxies

The proportion of GRB hosts below a given detection limit provides an estimate
of the fraction of star formation “hidden” in such faint galaxies
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* Shedding light on cosmic reionization

_27.5
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Reionization sustained by stars 7
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Combination of massive star formation rate and ionizing escape
fraction will establish whether stellar radiation was sufficient to
reionize the universe, and indicate the galaxy populations responsible

THESEUS Consortium 2021



* Cosmic chemical evolution at high-z

log (Z/Zg )
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The power of long GRBs for cosmology

Most luminous and remote phenomena in the Universe, with
isotropic-equivalent radiated energies in X-gamma rays up to

more than 10°* erg released in a few tens of seconds and a
redshift distribution extending to at least z = 9-10.

a) GRBs as tools for exploring the early Universe at the end of
the "dark ages" (reionization, first stars, star formation rate
and metallicity evolution in the first billion of years)

b) Using GRBs to investigate the expansion rate and
geometry of the Universe, thus getting clues to "dark
energy" properties and evolution




Why looking for more cosmological probes ?

L different distribution in redshift and methods-> different

Q=

D,

Supernova Cosmology Project
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(1 Each cosmological probe is
characterized by possible systematics  * —Z=

as measured

J e.g SN la:

» different explosion mechanism and
progenitor systems ? May depend on z ?

Mpg=>5 log(#/65)

» light curve shape correction for the
luminosity normalisation may depend on z

» signatures of evolution in the colours . /’"\\‘ ightcurve timescale
| stretch-factor corrected
» correction for dust extinction 18 “

5 log(#/65)

Mg

» anomalous luminosity-color relation 5 \*\ ."
LW Fe 2o

| s
16

» contaminations of the Hubble Diagram
by no-standard SNe-la and/or bright SNe- "= & 0w z

days

|bC (eg HNE) Kim, et al. (1997)



Measuring cosmological parameters with GRBs

» GRB vFv spectra typically show a peak at a characteristic photon
energy E,

» measured spectrum + measured redshift -> intrinsic peak enery and
radiated energy

lm D? 107/ 1+
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Amati et al. (2002,2006,2008, 2013)




d “Standardizing” GRBs through the Ep-Eiso correlation

Ep i = Epops X (1+2)

J 104 /142 > Dl D (Z HO"QM"QA’°'°)
I [ EN(E)dE ere
1

']l*?' 1/1+=

"'-"ESG

O not enough low-z GRBs for cosmology-independent calibration -> circularity
is avoided by fitting simultaneously the parameters of the correlation and
cosmological parameters

d does the extrinsic scatter and goodness of fit of the Ep,i-Eiso correlation vary
with the cosmologlcal parameters used to compute Eiso ?
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 afraction of the extrinsic scatter of the E ;-E;;, correlation is indeed
due to the cosmological parameters used to compute E,__

(J Evidence, independent on other cosmological probes, that, if we
are in a flat Universe, ), is lower than 1 and around 0.3
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©
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0.2 0.4 0.6 0.8 1.0

O
;:'J T 1

Amati et al. 2008, Amati & Della Valle 2013, Moresco, Amati et al. 2022



 afraction of the extrinsic scatter of the E ;-E;;, correlation is indeed
due to the cosmological parameters used to compute E,__

(J Evidence, independent on other cosmological probes, that, if we
are in a flat Universe, ), is lower than 1 and around 0.3
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Amati et al. 2008, Amati & Della Valle 2013, Moresco et al. 2022
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Supernova Cosmology Project

Knop et al. (2003)
Spergel et al. (2003)
Allen et al. (2002) |
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 Calibration with SNe-la |
50+
» The GRB Hubble diagram _
extends to much higher z 45}
w/r to SNe la

Iy ji

BN
10l
o A

> The GRB Hubble diagram st
is consistent with SNe la

Hubble diagram and BAO
points at low redshifts:
reliability

50 +

45}

u(z)

40 -
» e.g., Capozziello et al.,

Kodama et al., Tsutsui etal.,, .|

Demianski et al.):



lg(Flux)

 Involving other GRB observables

» Extending or replacing the Ep-Intensity correlation by involving other
prompt or afterglow properties: e.g., “Combo relation” (lzzo et al., Muccino
et al.), Lx-Ta and Lx-Ta-Lp relations (Dainotti et al.)

Prompt emission

A
/| \ Plateau
§—~1 c. : \ ————————— ‘
Sharp decline e e

Shallow decline

7

Normal decline

Schematic X-ray light curve
(Zhang et al., 2006; Nousek et al., 2006)

Jet bre:
/

Moresco et al. 2022

Correlation Reference
| ] O Amati et al. (2002)
b B Ghirlanda et al. (2004)
| e P Yonetoku et al. (2004)
Lpeak — Tiag Azzam (2012)
Ly, -V Fenimore and Ramirez-Ruiz (2000)
Liso — Ep; — To s Firmani et al. (2006)
Liso — Ep i — threak Liang and Zhang (2005)
Lx -T, Dainotti et al. (2008)
Ex iso — By iso — Epk Bernardini et al. (2012)

E",‘.iso = E.\’.iso = Epk

[zz0 et al. (2015)




 Joining GRBs with other probes: e.g., high-z GNs

Age of the Universe in billion years
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What we are aiming at ?

All observational cosmology tests agree: ~96% of the Universe is dark
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All observational cosmology tests agree: ~96% of the Universe is dark
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B SNela 1 GRBs

The power of GRBs
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THESEUS: substantial leap in GRB with redshift

_ First Stars
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THESEUS: unprecedented spectroscopy of GRB

Swift/BAT
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» Future GRB experiments (e.g., SVOM, HERMES, THESEUS, ...) and more
investigations (in particular: reliable estimates of jet angles and self-
calibration) will improve the significance and reliability of the results and
allow to go beyond SN la cosmology (e.g. investigation of dark energy)
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Short GRBs and multi-messenger astrophysics

GW170817 + SHORT GRB 170817A + KN AT2017GFO (~40 Mpc):
the birth of multi-.messenger astrophysics

Lightcurve from Fermi/GBM (50 — 300 keV) |
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Short GRBs and multi-messenger astrophysics

GW170817 + SHORT GRB 170817A + KN AT2017GFO (~40 Mpc):
the birth of multi-.messenger astrophysics

Lightcurve from Fermi/GBM (50 — 300 keV)
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LIGO, Virgo, and partners make first detection of
gravitational waves and light from colliding neutron stars

Lightcurve from Fermi/GBM (50 — 300 keV)
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Multi-messenger cosmology through GRBs

MEASURING THE EXPANSION RATE AND GEOMETRY OF SPACE-TIME
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Fundamental physics with GRBs: testing LI / QG

1 Using time delay between low and high energy photons to put Limits on

Lorentz Invariance Violation (allowed by unprecedent Ferml GBM + LAT
broad energy band) =
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In summary

GRBs are a key phenomenon for cosmology (ealry Universe, cosmological
parameters) and fundamental physics

Next generation GRB missions, like THESEUS, developed by a large
European collaboration and already studied by ESA (M5 Phase A) will fully
exploit these potentialities and will provide us with unprecedented clues
to GRB physics and sub-classes.

THESEUS is a unique occasion for fully exploiting the European leadership
in time-domain and multi-messenger astrophysics and in related key-
enabling technologies

THESEUS observations will impact on several fields of astrophysics,
cosmology and fundamental physics and will enhance importantly the
scientific return of next generation multi messenger (aLIGO/aVirgo, LISA,
ET, or Km3NET;) and e.m. facilities (e.g., LSST, E-ELT, SKA, CTA, ATHENA)

** THESEUS Phase A study by ESA very successful and base for further dev.

SPIE articles on instruments and Exp.Astr. Articles on science on arXiv

http://www.isdc.unige.ch/theseus/




