17TH MARCEL GROSSMANN MEETING 2024

DETECT SUPERMASSIVE DARK STARS WITH ROMAN SPACE TELESCOPE

Keywords: detectors, early universe, dark matter, first stars

PRESENTER: SAIYANG ZHANG

Department of Physics, University of Texas at Austin COAUTHOR: Cosmin Ilie, Department of Physics and Astronomy, Colgate University Katherine Freese, Department of Physics, University of Texas at Austin

James Webb Space Telescope (JWST)

https://www.nasa.gov/image-article/james-webb-space-telescope-jwst/

MARCEL GROSSMANN MEETING 2024

Webb Near-IR

Hubble Near-IR

Some Recent Discoveries by JWST

Fig. 2: JWST and Chandra images of UHZ1.

JWST NIRCam zoom-in on UHZ1

z=10 AGN: UHZ-1

Bodgan A., et al. (2024)

What are the Dark Stars?*

Freese, K. et al. 2008; Freese, K. et al.2016

- Formed in the early universe (z~10-50)
- Powered by dark matter (WIMP) annihilation
- Giant, cool and puffy stellar object
- Two formation scenario: Adiabatic Contraction(AC) and Capture of DM
- Accrete mass from surrounding to grow supermassive
- Potential seeds for supermassive black holes
- Possible Candidates Detected by JWST*

Freese, K. et al. 2010; Ilie, C. et al. 2012; Ilie, C. et al. 2023 MARCEL GROSSMANN MEETING 2024

About Pop.III Galaxies

- Formed from low metallicity gas (almost pure H and He)
- Galaxies made mainly of population III stars
- Can grow as large as ~10⁷ solar mass in Lambda-CDM universe*, and even larger in other scenarios

Jaacks, J., et al. 2018

 Evolutionary spectrum modeled by YggDrasil*, and detectable by JWST

Zackrisson, E., et al. 2011

Roman Space Telescope

- Designed to launch in Oct 2026
- 0.28 deg² field of view, 100x larger field of view compared to Hubble Space Telescope
- Designed for Wide Field Survey, which will explore Dark Energy, Dark Matter, Exoplanet and Near-Infrared Science
- Wide Field Imaging covers wavelengths from ~0.5-2.3 microns
- Pandeia Engine for image simulation*

Pontoppidan, Klaus M., et al. 2016

JWST vs. Roman

7

JWST vs. Roman

- Rest Frame Spectrum generated by TLUSTY*
 Hubeny, I., 1988
- He II 1640A absorption line as the smoking gun
- JWST covers wider
 wavelength while having
 smaller field of view
 compared to Roman
- Combine JWST and Roman to detect Dark Stars* Zhang, S., et al, 2024

Photometry with Roman

MARCEL GROSSMANN MEETING 2024 Zhang, S., et al, 2024

Magnitude Prediction

MARCEL GROSSMANN MEETING 2024

Zhang, S., et al, 2024

Magnitude Prediction

Zhang, S., et al, 2024

Without the effect of lensing, how the images might look like in the Roman Space Telescope?

When the objects are magnified by 100x through gravitational lensing, then how the image might look like:

Earendel: an Example of Gravitational Lensing

https://esahubble.org/image s/heic1106c/

Welch, B., et al 2022

Photometric Detection with Lensing

MARCEL GROSSMANN MEETING 2024

Effective size: SMDS vs. POP III galaxies

Effective size: SMDS vs. POP III galaxies

Color Index: SMDS vs. POP III galaxies

MARCEL GROSSMANN MEETING 2024

Summary of the results

- Super massive dark stars (~10⁶ solar mass) could be observed by Roman Space Telescope without lensing
- With lensing, it is possible to resolve supermassive dark stars of lower mass (~10⁴ solar mass) from other luminous objects based on color-color diagram
- With lensing by foreground clusters (μ ~10), it is possible to tell SMDS from Pop III galaxies by their effective size
- It is more likely to distinguish super massive dark stars formed via adiabatic contraction from other objects than those formed by dark matter capture

Future Directions

- Find more possible Dark Star observational signatures
- Algorithm to distinguish between Dark Stars from objects (if enough data has been collected)
- Spectroscopic analysis of the SMDS Candidates
- Find more possible dark star candidates from available JWST dataset

Thank you! Grazie!