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Two points program

o Introduction to nondiagonal Bianchi models  [Montani, MB 23]
« Minisuperspace and Ashtekar variables [9r-qc] 2302.03638
* Flux quantization procedure

o Abelianization of the Gauss constraint [Montani, MB ‘23]
« Gauge freedom and canonical transformation [9r-qc] 2306.10934
» Revised Gauss Constraint and Quantum-level implications
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Nondiagonal Bianchi models
Minisuperspace

[Landau, Lifshits 74]
[Belinski “14]

Globally hyperbolic spacetime M =R x X [Montani, MB ‘23]

Homogeneous space 2 prescription  q;;(t, x) = n; (D] (x)w! (x)

Nondiagonal metric decomposition  1;; = [4zR{'R}
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- Metric configuration variables {ai,a,,a3,0,Y, ¢}

¢3 as

Universality of the diagonal model in LQC



Nondiagonal Bianchi models

Ashtekar variables

Lagrangian
LADM
= N|det(w))|y/det(T4p) [R + Nz (TACTBPT, o Tep + 28T (RA)E (RA)G + 2(RA)E(RA)S
+ ZNANB(fA]fBI + nI]nKLfAIfB]) + 4NSn'In,, fir — FI]FI]FKLFKL)]

Ashtekar connection

1 1 1
A% = 2 abc a €A RKfI] gabc nI]AKA%fL]K

)4
4 o b N ——agR[ (77 ]77]1 + N4ntEn, fAK + NAfAI)]

Electric field
= |det(a){)| Sgn(a(a)) |abac|AIa€Ii
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Nondiagonal Bianchi | model
Ashtekar variables

Lagrangian

LADM

= N|det(w!)|/det(T4p) [/’+ ME (TACTBPT, s Tep + 2T 48T (RA)2 (RA)S + 2(RA)E(RA)S

+‘\> \: FI]FI]FKLFKL)]
0 0

Ashtekar connection

- , | g
_ [\ \\\\\‘ 2N a(a) RL (n ]T’]I \ \\"“\\, 0 \\\18] (l){
0 0

Electric field
= |det(w{)| sgn(a(y)) lapa.lALE}
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Nondiagonal Bianchi | model

Flux quantization

Quantization in the flux polarization as in [Ashtekar, Wilson-Ewing ‘09]

The fluxes computed on the faces of the fiducial cell

$2] B2
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The fluxes have the same form of the diagonal case
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Nondiagonal Bianchi | model
Hilbert space

B Basis states of the Hilbert space: |p1,p,, p3,6,¥, ¢)
p1 = azas

p2 = a143 ”
P3 = a,0; H = @ H
a€so(3)

Kinematical geometric operators

Volume operator Vol = Vy/p10203

Area operator Ar(o-i) — |pi|LijEijk The kinematic depends Only on the “diagonalu fluxes

Holonomy along the i-th edge
Lic; Lpws Law,
hy, = exp(1;011,) ¢ = Lyws Lycp Laywy w; functions of fluxes and angles,
Liw, Low; Lscs linear in angles velocities
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Nondiagonal Bianchi | model

Dynamics
1
H=- (P1p2C1Ca + PaP3CaC3 + P1P3C1C3) Free diagonal part
8ryG
P P2\ N
+ (—1 = —2> Uy
P2 D1
p, P —2 . Quadratic in angles momenta
+<—2——3> (—COSQCOtl/JT[Q —sin9n¢+c059csc¢n¢) =
P3Pz No holonomies
-2
+(%—%> (— sin 6 coty my + cos O my, + sin0c5c¢n¢)2
3 1 a
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Abelianization of the Gauss constraint

Gauge freedom

Ga |80Mt . O ‘th = {al’ ap,as, 9) lp; ¢, TT4,7,, T3, Ty, T[l,[); 7T¢}

M. Bojowald’s suggestion in [Bojowald '00, “13]

AL(t,x) = pf(Dw] (x) }
_ _ Gq = Eabcgb}?pé
E4(t,x) = |det(w(x))|py ()¢} (x)

Mismatch in
the number
of degrees of
freedom!

Recover the gauge freedom adding a rotation

@M_t s {a]_; az; a3; 8; l/); ¢; a, ﬁ) Y, mq,T,, 7T3; T[Q; T[l/); 7T¢, ﬂa; T[B; 77:-},}

Three abelian constraints {7 =0
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Abelianization of the Gauss constraint

Canonical transformation

Lie condition ¢#dpl, — m,dq,, = 0 provides, perturbative in configurational variables, a linear
dependence between Gauss constraint and gauge momenta

Ansatz
Gauss constraint is linear in the gauge momenta G, = Ly,

90% Admits a
System of 9 independent equations €45, = Lag(Ot)ga—b unique
g solution!

cscfsiny cosy —cotfsiny
0 0 1

Log

(—csc,[)’cosy siny Cotﬁcosy>
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Abelianization of the Gauss constraint

The Abelian contraints

—cscfcosym, sinymg cotfcosym,
G,=| cscfsinym, cosymg —cotfsinym,
0 0 T,

The Gauss constraint is recast into three abelian constraints, namely the gauge momenta

This feature holds at the quantum level G, |¥) =0 < fig|¥) =0
The wavefunction factorizes W(p;,p2,p3,61,02,63,a,6,v) = ¢(a,,v)P(D1, P2, 03,01, 02, 03)

fig|¥) =0 = ¢ = const

The Hilbert space previously defined is the gauge-invariant one
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From a SU(2)
symmetry,
three U(1)

appear!

[Loran ‘02]
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Abelianization of the Gauss constraint
The relation with SU(2)

{G,, Gb}@m = €4-G, The Gauss constraint has the usual commutation relation on g3z

Considering the following parametrization of SO(3) R = exp a;j; Jji generators of s0(3)

€ s0(3) = su(2)
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Conclusions

o The diagonal quantization in LQC can be extended to the nondiagonal case,
In which the kinematic and the geometric operators conserve their simple
expression

o The Abelianization of the quantum theory is a feature of the minisuperspace.
The three U(1) symmetries arise from decomposing the Gauss constraint in
three abelian ones

o The loop quantization of the diagonal case is quite general within the
minisuperspace approach. The introduction of nondiagonal terms and the
gauge freedom yield to the same kinematical picture
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Thank you for your attention

The Universality of the diagonal model in Loop Quantum Cosmology
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