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PBH formation in inflationary cosmology
Cosmological perturbations can directly collapse to black holes, which
are called primordial black holes (PBHs).

▶ Fluctuations generated in inflation get stretched to super-horizon scale.
▶ After inflation, they are described by long-wavelength solutions.
▶ Once they enter the horizon, the long-wavelength scheme breaks down.
▶ Only a nonlinearly large amplitude can collapse to a PBH in RD.

Figure: The time evolution of the Hubble length and the fluctuation scale
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Cosmological conformal 3+1 decomposition
Metric

ds2 = −α2dt2 + ψ4a2(t)γ̃ij(dx
i + βidt)(dxj + βjdt),

where γ̃ = η with ηij being the flat 3D metric.
a(t): the scale factor of the flat FLRW solution
Flat FLRW: α = 1, βi = 0, ψ = 1 and γ̃ij = ηij

Figure: Slicing and threading with γij = ψ4a2(t)γ̃ij
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Long-wavelength limit

A smoothing length is L = a/k, below which it is described by the
FLRW, while the Hubble length is ℓH := H−1, where H = ȧ/a.

Expansion parameter ϵ ≪ 1

ϵ :=
ℓH

L
=

k

aH
with

∂i lnψ

aH
= O(ϵ)

In the decelerated expansion, the limit ϵ → 0 realises as t → 0.
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Long-wavelength solutions

Gradient expansion. The Einstein eqs imply the following:
▶ Metric: ψ = Ψ(x)(1 + ξ), α = 1 + χ and γ̃ij = ηij + hij .

Ψ(x) = O(ϵ0), ξ = O(ϵ2), βi = O(ϵ), χ = O(ϵ2), hij = O(ϵ2)

▶ Matter: Tµν = (ρ+ p)uµuν + pgµν , ρ = ρb(1 + δ), vi = ui/ut

δ = O(ϵ2), vi = O(ϵ)

▶ Extrinsic curvature:
Kij = Aij + (K/3)γij , K = −3H(1 + κ), Ãij = ψ−4a−2Aij

κ = O(ϵ2), Ãij = O(ϵ2)

Shibata & Sasaki (1999), Lyth, Malik & Sasaki (2005)
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Shibata-Sasaki compaction function

Shibata and Sasaki (1999) used the conformally flat coordinates

ds2 = −α2dt2 + ψ4a2(t)[(dr + βrdt)2 + r2dΩ2],

in spherical symmetry in the CMC slice, which is compatible with the
LWL scheme.

They calculated the Misner-Sharp (Kodama) mass excess and the
compaction function as follows:

δMSS := 4πa3ρ0

∫ r

0
x2dxδCMCψ

6

(
1 +

2x

ψ

∂ψ

∂x

)
CSS :=

δMSS(t, r)

R(t, r)
=
δMSS(t, r)

rψ2(t, r)a
,

where R(t, r) = rψ2(t, r)a(t) is the areal radius

CSS in the LWL solution becomes time-independent in the limit
ϵ → 0 or t → 0.
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CSS gives a PBH formation threshold

δCMC(t, r) and CSS(r)

(a) (b)

Figure: (a) δCMC(t, r), CSS(r), (b) CSS for the critical cases

Empirically, the maximum of CSS(r) gives a robust threshold ≃ 0.4
for PBH formation for radiation Γ = 4/3, where p = (Γ − 1)ρ.

Shibata & Sasaki (1999), Harada, Yoo, Nakama & Koga (2015), c.f. Escriva et al. (2019)

T. Harada (Rikkyo U.) Compaction function MG17, Pescara 7 / 12



CSS in terms of Ψ

LWL soln in the CMC slice in spherical symmetry

δCMC ≈ f

(
1

aH

)2

, uCMCr ≈
2

3Γ(3Γ + 2)H
δCMC,r,

Ψ = Ψ(r), f = f(r) = −
4

3

1

r2Ψ5

(
r2Ψ′)′

CSS in the LWL soln can be rewritten as

CSS ≈
1

2

[
1 −

(
1 + 2

d lnΨ

d ln r

)2
]

This does not contain Ψ′′.

TH, Yoo, Nakama & Koga (2015)
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Mass and mass excess

In reality, the Misner-Sharp mass also contains the contribution from
the velocity perturbation.

M = 4π

∫ r

0
x2dxa3αψ6T t

µK
µ

= 4πa3
∫ r

0
dx(ψ2x)2

{
−[(ρ+ p)utut + p](ψ2x)′

+(ρ+ p)utur
x

a
(ψ2a),t

}
,

where Kµ := −ϵAB∂BR
(
∂/∂xA

)µ
.

Mass excess
▶ The mass excess from the flat FLRW spacetime is naturally defined as

δM(t, r) = M(t, r) −MFF(t, ψ
2(t, r)r),

i.e., the difference between masses enclosed by two spheres of the same
areal radius.
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CSS ̸= CCMC

Mass excess

δMCMC ≈ 4πa3ρb

∫ r

0

dx(Ψ2x)2
[
δCMC(Ψ

2x)′

+
2

3(3Γ + 2)
δ′CMC(Ψ

2x)

]
= 4πa3ρb

[
3Γ

3Γ + 2

∫ r

0

dx(Ψ2x)2(Ψ2x)′δCMC

+
2

3(3Γ + 2)
δCMC(t, r)(Ψ

2(r)r)3
]
,

where integration by parts is implemented. This reduces to

CCMC :=
δMCMC

R

≈
3Γ

3Γ + 2
CSS(r) +

1

3Γ + 2
δCMC(t, r)(aH)2(Ψ2(r)r)2.
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CSS and Ccom

In the comoving slice, which is compatible with the LWL solns,

δcom ≈
3Γ

3Γ + 2
f

(
1

aH

)2

, ucomj = 0,

δMcom(t, r) ≈
3Γ

3Γ + 2
δMSS(t, r)

The legitimate compaction function in the comoving slice is thus
directly related to CSS as

Ccom(r) :=
δMcom

R
≈

3Γ

3Γ + 2
CSS(r).
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Summary

Despite the initial intention, CSS ̸= δM/R in the CMC slice but
CSS happens to Ccom up to a constant factor.

Both CSS and Ccom give a robust threshold for PBH formation
CSS ≃ 0.4 or Ccom ≃ 2/3 × 0.4 for radiation.
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CSS and CCMC

CSS does not contain Ψ′′ or δ. This is why CSS is empirically robust.

Gedanken experiment:
▶ Assume a spiky shell of trivial mass ∝ r21∆

1/2. Then, the
perturbation will not collapse to a BH but disperse due to strong
pressure gradient force.

Figure: Spiky spherical shell

▶ In this case, CCMC(r) has a large maximum of O(∆−1/2) at r1,
whereas both CSS(r) and Ψ(r) are kept small.
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