Revisiting compaction functions for PBH formation

Tomohiro Harada

Department of Physics, Rikkyo University

MG17 @ The 'Gabriele d'Annunzio' University, ICRANet and Aurum, Pescara, 7-12 July 2024

This talk is based on TH, C.M. Yoo & Y. Koga PRD108 043515 (2023) [arXiv:2304.13284].

PBH formation in inflationary cosmology

- Cosmological perturbations can directly collapse to black holes, which are called primordial black holes (PBHs).
 - Fluctuations generated in inflation get stretched to super-horizon scale.
 - After inflation, they are described by long-wavelength solutions.
 - Once they enter the horizon, the long-wavelength scheme breaks down.
 - Only a nonlinearly large amplitude can collapse to a PBH in RD.

Figure: The time evolution of the Hubble length and the fluctuation scale

Cosmological conformal 3+1 decomposition

Metric

$$ds^2=-lpha^2 dt^2+\psi^4 a^2(t) ilde{\gamma}_{ij}(dx^i+eta^i dt)(dx^j+eta^j dt),$$

where $\tilde{\gamma} = \eta$ with η_{ij} being the flat 3D metric.

- a(t): the scale factor of the flat FLRW solution
- Flat FLRW: lpha=1, $eta^i=0$, $\psi=1$ and $ilde{\gamma}_{ij}=\eta_{ij}$

Figure: Slicing and threading with $\gamma_{ij} = \psi^4 a^2(t) \tilde{\gamma}_{ij}$

T. Harada (Rikkyo U.)

Long-wavelength limit

- A smoothing length is L = a/k, below which it is described by the FLRW, while the Hubble length is $\ell_H := H^{-1}$, where $H = \dot{a}/a$.
- Expansion parameter $\epsilon \ll 1$

• In the decelerated expansion, the limit $\epsilon \to 0$ realises as $t \to 0$.

Long-wavelength solutions

• Gradient expansion. The Einstein eqs imply the following:

• Metric:
$$\psi = \Psi(\mathbf{x})(1+\xi)$$
, $\alpha = 1+\chi$ and $\tilde{\gamma}_{ij} = \eta_{ij} + h_{ij}$.

$$\Psi(\mathbf{x}) = O(\epsilon^0), \xi = O(\epsilon^2), \beta^i = O(\epsilon), \chi = O(\epsilon^2), h_{ij} = O(\epsilon^2)$$

• Matter:
$$T^{\mu\nu} = (\rho + p)u^{\mu}u^{\nu} + pg^{\mu\nu}$$
, $\rho = \rho_b(1 + \delta)$, $v^i = u^i/u^t$
 $\delta = O(\epsilon^2)$, $v^i = O(\epsilon)$

• Extrinsic curvature:

$$K_{ij} = A_{ij} + (K/3)\gamma_{ij}, K = -3H(1+\kappa), \tilde{A}_{ij} = \psi^{-4}a^{-2}A_{ij}$$

 $\kappa = O(\epsilon^2), \ \tilde{A}_{ij} = O(\epsilon^2)$

Shibata & Sasaki (1999), Lyth, Malik & Sasaki (2005)

Shibata-Sasaki compaction function

• Shibata and Sasaki (1999) used the conformally flat coordinates

$$ds^2 = -\alpha^2 dt^2 + \psi^4 a^2 (t) [(dr + \beta r dt)^2 + r^2 d\Omega^2], \label{eq:selectropy}$$

in spherical symmetry in the CMC slice, which is compatible with the LWL scheme.

 They calculated the Misner-Sharp (Kodama) mass excess and the compaction function as follows:

$$egin{aligned} \delta M_{ ext{SS}} &:= & 4\pi a^3
ho_0 \int_0^r x^2 dx \delta_{ ext{CMC}} \psi^6 \left(1 + rac{2x}{\psi} rac{\partial \psi}{\partial x}
ight) \ \mathcal{C}_{ ext{SS}} &:= & rac{\delta M_{ ext{SS}}(t,r)}{R(t,r)} = rac{\delta M_{ ext{SS}}(t,r)}{r \psi^2(t,r) a}, \end{aligned}$$

where $R(t,r)=r\psi^2(t,r)a(t)$ is the areal radius

• $\mathcal{C}_{\mathrm{SS}}$ in the LWL solution becomes time-independent in the limit $\epsilon o 0$ or t o 0.

${\cal C}_{ m SS}$ gives a PBH formation threshold • $\delta_{ m CMC}(t,r)$ and ${\cal C}_{ m SS}(r)$

Figure: (a) $\delta_{
m CMC}(t,r)$, $\mathcal{C}_{
m SS}(r)$, (b) $\mathcal{C}_{
m SS}$ for the critical cases

• Empirically, the maximum of $C_{\rm SS}(r)$ gives a robust threshold $\simeq 0.4$ for PBH formation for radiation $\Gamma = 4/3$, where $p = (\Gamma - 1)\rho$.

Shibata & Sasaki (1999), Harada, Yoo, Nakama & Koga (2015), c.f. Escriva et al. (2019)

T. Harada (Rikkyo U.)

$\mathcal{C}_{\rm SS}$ in terms of Ψ

• LWL soln in the CMC slice in spherical symmetry

$$\begin{split} \delta_{\mathrm{CMC}} &\approx f\left(\frac{1}{aH}\right)^2, \ u_{\mathrm{CMC}r} \approx \frac{2}{3\Gamma(3\Gamma+2)H} \delta_{\mathrm{CMC},r}, \\ \Psi &= \Psi(r), \ f = f(r) = -\frac{4}{3} \frac{1}{r^2 \Psi^5} \left(r^2 \Psi'\right)' \end{split}$$

 $\bullet \ \mathcal{C}_{\mathbf{SS}}$ in the LWL soln can be rewritten as

$$\mathcal{C}_{ ext{SS}} pprox rac{1}{2} \left[1 - \left(1 + 2 rac{d \ln \Psi}{d \ln r}
ight)^2
ight]$$

This does not contain Ψ'' .

TH, Yoo, Nakama & Koga (2015)

8/12

Mass and mass excess

• In reality, the Misner-Sharp mass also contains the contribution from the velocity perturbation.

$$egin{aligned} M &= & 4\pi \int_0^r x^2 dx a^3 lpha \psi^6 T^t_{\ \mu} K^\mu \ &= & 4\pi a^3 \int_0^r dx (\psi^2 x)^2 \left\{ -[(
ho+p) u^t u_t + p] (\psi^2 x)'
ight. \ &+ (
ho+p) u^t u_r rac{x}{a} (\psi^2 a)_{,t}
ight\}, \end{aligned}$$

where $K^{\mu}:=-\epsilon^{AB}\partial_{B}R\left(\partial/\partial x^{A}
ight)^{\mu}$.

- Mass excess
 - The mass excess from the flat FLRW spacetime is naturally defined as

$$\delta M(t,r) = M(t,r) - M_{\rm FF}(t,\psi^2(t,r)r),$$

i.e., the difference between masses enclosed by two spheres of the same areal radius.

T. Harada (Rikkyo U.)

Compaction function

$$\mathcal{C}_{\mathrm{SS}}
eq \mathcal{C}_{\mathrm{CMC}}$$

• Mass excess

$$egin{aligned} \delta M_{
m CMC} &pprox & 4\pi a^3
ho_b \int_0^r dx (\Psi^2 x)^2 \left[\delta_{
m CMC} (\Psi^2 x)'
ight. \ & + rac{2}{3(3\Gamma+2)} \delta_{
m CMC}' (\Psi^2 x)
ight] \ &= & 4\pi a^3
ho_b \left[rac{3\Gamma}{3\Gamma+2} \int_0^r dx (\Psi^2 x)^2 (\Psi^2 x)' \delta_{
m CMC}
ight. \ & + rac{2}{3(3\Gamma+2)} \delta_{
m CMC} (t,r) (\Psi^2 (r)r)^3
ight], \end{aligned}$$

where integration by parts is implemented. This reduces to

$$egin{aligned} \mathcal{C}_{ ext{CMC}} &:= & rac{\delta M_{ ext{CMC}}}{R} \ &pprox & rac{3\Gamma}{3\Gamma+2} \mathcal{C}_{ ext{SS}}(r) + rac{1}{3\Gamma+2} \delta_{ ext{CMC}}(t,r) (aH)^2 (\Psi^2(r)r)^2. \end{aligned}$$

$\mathcal{C}_{\rm SS}$ and $\mathcal{C}_{\rm com}$

In the comoving slice, which is compatible with the LWL solns,

$$egin{aligned} \delta_{
m com} &pprox & rac{3\Gamma}{3\Gamma+2}f\left(rac{1}{aH}
ight)^2, \ u_{
m comj}=0, \ \delta M_{
m com}(t,r) &pprox & rac{3\Gamma}{3\Gamma+2}\delta M_{
m SS}(t,r) \end{aligned}$$

• The legitimate compaction function in the comoving slice is thus directly related to $\mathcal{C}_{\rm SS}$ as

$$\mathcal{C}_{
m com}(r):=rac{\delta M_{
m com}}{R}pprox rac{3\Gamma}{3\Gamma+2}\mathcal{C}_{
m SS}(r).$$

Summary

• Despite the initial intention, $C_{SS} \neq \delta M/R$ in the CMC slice but C_{SS} happens to C_{com} up to a constant factor.

• Both $C_{\rm SS}$ and $C_{\rm com}$ give a robust threshold for PBH formation $C_{\rm SS} \simeq 0.4$ or $C_{\rm com} \simeq 2/3 \times 0.4$ for radiation.

$\mathcal{C}_{\mathrm{SS}}$ and $\mathcal{C}_{\mathrm{CMC}}$

- \mathcal{C}_{SS} does not contain Ψ'' or δ . This is why \mathcal{C}_{SS} is empirically robust.
- Gedanken experiment:
 - Assume a spiky shell of trivial mass $\propto r_1^2 \Delta^{1/2}$. Then, the perturbation will not collapse to a BH but disperse due to strong pressure gradient force.

Figure: Spiky spherical shell

• In this case, $C_{CMC}(r)$ has a large maximum of $O(\Delta^{-1/2})$ at r_1 , whereas both $C_{SS}(r)$ and $\Psi(r)$ are kept small.

T. Harada (Rikkyo U.)