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Going beyond ΛCDM

 Cosmological constant problem, H0 problem, σ8 problem etc inspires us to look
for models beyond the standard model of cosmology, i.e. beyond ΛCDM. Such
models describe a dynamical dark energy, as opposed to a “constant” dark
energy given by the cosmological constant.

 These alternative models are constructed by adding one or more additional
dynamical degrees of freedom to the standard model based on GR, either by
adding additional matter components (canonical or non-canonical fields,
non-ideal fluids or combinations thereof) or altering the theory of gravity
altogether (scalar-tensor theories dominating this direction).

 There are clear problems associated with both approaches. For additional

matter components, one may ask their explanation from the particle physics

side. On the other hand, modified gravity theories are usually highly constrained

by local gravity tests and many a time plagued by various instabilities.
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An interesting way to go beyond

 An interesting alternative line of explanation is based on relaxing the
assumption of homogeneity. Since a full non-perturbative treatment of generic
inhomogeneous spacetime dynamics is very difficult, the toy model of
spherically symmetric inhomogeneous spacetimes, namely the
Lemáıtre-Tolman-Bondi (LTB) model is usually considered.

 One class of works have studied LTB models with a purely formal notion of
acceleration [1, 2, 3, 4]. Another class of works tried to explain the observed
luminosity distance-redshift relation without any notion of an acceleration
[5, 6, 7, 8]. Of course, such models also have their fair share of observational
constraints.

 Two explicit theorems were proved by Mustapha, Hellaby and Ellis which make
it clear that homogeneity cannot be proven without either a fully determinate
theory of source evolution or availability of distance measures independent of
the source evolution [9], which makes it worthwhile to study inhomogeneous
cosmology.
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Dynamical systems in cosmology

 Dynamical system analysis is an invaluable tool for studying the dynamics of
homogeneous spacetimes, since the governing equations are ordinary differential
equations. It has been used extensively for studying dark energy models based
on FLRW. For inhomogeneous spacetimes, it cannot be applied in a
straightforward manner because the governing equations are partial differential
equations. Some attempts are there.

 The orthonormal frame based approach by Wainwright and Uggla
[10, 11, 12, 13] is quite mathematical intricate: even the constraint equations
are not algebraic but differential. Sussman’s approach in terms of quasi-local
variables [14, 15] has algebraic constraints, but the variables do not directly
related to actual covariant quantities relevant to a comoving observer.

 I will talk about a new dynamical system formulation for inhomogeneous LRS-II
spacetimes based on the semitetrad 1+1+2 covariant decomposition approach
introduced by Clarkson [16, 17], which itself is built up on the semitetrad 1+3
covariant decomposition approach popularized by Ellis [18, 19]. In our approach
the dynamical variables are directly related to actual covariant quantities (like
Wainwright and Uggla) but the constraints are algebraic as well (like Sussman).
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Covariant 1+3 and 1+1+2 splitting

 1+3 covariant decomposition splits all the covariant quantities into a part
along the timelike unit 4-vector uµ (uµuµ � �1) of the congruence of
cosmological fundamental observers and one perpendicular to it. Metric
decomposes as gµν � Uµν � hµν , where Uµν � �uµuν is the projector along
uµ and hµν is the projector on the 3-surface orthogonal to uµ (hµνu

ν � 0).

 The specific choice of the congruence (i.e. uµ) is called a “frame” choice. 1+3
decomposition leaves us with scalars, 3-vectors, 3-tensors (“3-quantities” lie
completely on the 3-space and orthogonal to uµ).

 1+1+2 covariant decomposition further splits all the “3-quantities” into a part
that lies along a “preferred” spacelike unit 3-vector eµ (eµeµ � 1) that lie
completely on the 3-surface and one perpendicular to eµ (the “sheet”). hµν
further decomposes as hµν � Eµν � Nµν , where Eµν � eµeν is the projector
along eµ and Nµν is the projector on the 2-sheet orthogonal to both uµ and eµ

(Nµνu
µ � 0 � Nµνe

µ).

 1+1+2 decomposition leaves us with scalars, 2-vectors, 2-tensors
(“2-quantities” lie completely on the 2-sheet and are orthogonal to both uµ

and eµ).
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LRS-II spacetime

 For LRS spacetimes, if the preferred 3-vector eµ is chosen along the LRS
direction (i.e. direction of the local rotational symmetry), 2-vectors and
2-tensors identically vanish, leaving us only with scalars. For a scalar ψ,
covariant derivatives along uµ, eµ are 9ψ � uµ∇µψ � uµBµψ and

ψ̂ � eµDµψ � eµhνµ∇νψ � eµBµψ

 We consider the LRS-II class (which contains LTB as a subcase)

ds2 � �
1

A2pt, rq
dt2 � B2pt, rqdr2 � C 2pt, rqrdy2 � D2

k pyqdz
2s ,

where t, r are affine parameters along uµ and eµ, k � p�1, 0, 1q denotes open,
flat and closed geometry of the 2-sheets respectively. The function Dkpyq is

Dkpyq �

$'&
'%
sin y , k � �1

y , k � 0

sinh y , k � �1

.
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LRS-II spacetime: continued...

The covariant scalars characterizing the LRS-II dynamics in presence of dust are

 θ; the expansion of the congruence with the timelike vector uµ.

 ϕ; the expansion of the 2-sheet along the LRS direction.

 Σ; projection of the shear tensor along the LRS direction.

 E ; projection of the electric part of the Weyl curvature tensor along LRS
direction.

 3R; the 3-curvature of the 3-space orthogonal to uµ.

 µ; fluid energy density measured locally by a cosmological fundamental
observer.

For a perfect fluid the acceleration vector aµ � uν∇νu
µ for the timelike congruence

vanishes, implying that the worldline of the fundamental observers are geodesics.

Since the time coordinate t is the affine parameter along uµ, we can identify the

congruence as the congruence of comoving geodesics.
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LRS-II covariant 1+1+2 equations

LRS-II covariant 1+1+2 equations in presence of dust are
Evolution equations:

9ϕ � �
1

2
ϕ

�
2

3
θ � Σ



,

9θ � �
1

3
θ2 �

3

2
Σ2 �

1

2
µ,

9µ � �θµ,

9Σ � �
1

2
Σ2 �

2

3
θΣ� E ,

9E � �
3

2
E
�
2

3
θ � Σ



�

1

2
µΣ.

Propagation equations: Spacelike
constraints conserved in time.

ϕ̂ � �
1

2
ϕ2 �

�
1

3
θ � Σ


�
2

3
θ � Σ




�
2

3
µ� E ,

Σ̂�
2

3
θ̂ � �

3

2
ϕΣ,

Ê � 1

3
µ̂ � �

3

2
ϕE .

 Friedmann constraint: θ2

9 �
3R
6 � µ

3 �
Σ2

4 .

 For any scalar ψ, 9̂ψ �
9

ψ̂ �
�
1
3θ � Σ

�
ψ̂.
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LRS-II covariant 1+1+2 equations rewritten
The idea is to promote the covariant derivatives along the LRS direction, i.e. the ˆp..q
variables to seperate dynamical variables and calculate their evolution equation using
the commutation relation. The propagation equations now act as purely algebraic
constraints helping us to eliminate some ˆp..q variables. The reduced system is

9ϕ � �
1

2
ϕ

�
2

3
θ � Σ



,

9θ � �
1

3
θ2 �

3

2
Σ2 �

1

2
µ,

9µ � �θµ,

9Σ � �
1

2
Σ2 �

2

3
θΣ� E ,

9E � �
3

2
E
�
2

3
θ � Σ



�

1

2
µΣ,

9

θ̂ � �θθ̂ � 3Σθ̂ �
9

2
Σ2ϕ�

1

2
µ̂,

9µ̂ � �

�
4

3
θ � Σ



µ̂� µθ̂.
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A dynamical system formulation for LRS-II

 Expansion normalized dynamical variables: x1 �
ϕ
θ , x2 �

3µ
θ2 , x3 �

3
2
Σ
θ , x4 �

E
θ2 , y1 �

ϕ̂
θ2 , y2 �

3µ̂
θ3 , y3 �

3
2

Σ̂
θ2 , y4 �

Ê
θ3 , z �

θ̂
θ2 .

 Friedmann constraint: x2 � x23 � 1� 3
2

3R
θ2 .

 Dynamical equations: (dτ � θdt, θ ¡ 0)

dx1
ϵdτ

�
1

6
x1p2x3 � x2 � 4x23 q,

dx2
ϵdτ

� �
1

3
x2p1� x2 � 4x23 q,

dx3
ϵdτ

� �
1

6
x3p2� 2x3 � x2 � 4x23 q �

3

2
x4,

dx4
ϵdτ

� �
1

3
x4p1� 3x3 � x2 � 4x23 q �

1

9
x2x3,

dy2
ϵdτ

� �
1

3
y2 �

1

6
y2p3x2 � 4x3q � x2z � 2x23 y2,

dz

ϵdτ
� �

1

6
y2 �

1

3
z �

1

3
x2z � 2x3z � 2x1x

2
3 �

4

3
x23 z .
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Some important discussions and interpretation

 Consider a covariant quantity Q. Because of the inhomogeneity of the system,
an observer has at his disposal two derivatives; 9Q and Q̂. The 9Q gives the
change in the value of Q at his frame, i.e. along his particular geodesic. Q̂ can
be interpreted as a “radial perturbation” respecting the local rotational
symmetry. A nonvanishing Q̂ stops the Q-distribution from being
homogeneous. An important corollary: Q � 0÷ Q̂ � 0.

 Physically, our approach goes into the frame of a comoving observer and follows
the dynamics from his perspective. A fixed point tx�1 , x

�
2 , x

�
3 , x

�
4 , y

�
2 , z

�u is
characterized by the vanishing of the following covariant scalar quantities:

tϕ�x�1 θ, 3µ�x�2 θ
2, 3Σ�2x�3 θ, E�x�4 θ

2, 3µ̂�y�2 θ
3, θ̂�z�θ2u � t0, 0, 0, 0, 0, 0u .

Since Q � 0÷ Q̂ � 0, not all the comoving observers experience the same
evolutionary phase (fixed point) simultaneously.

 If ty1, y2, y3, y4, zu � t0, 0, 0, 0, 0u, then tϕ̂, θ̂, Σ̂, Ê , µ̂u � t0, 0, 0, 0, 0u:
necessarily spatial homogeneity (example: Kantowski-Sachs). However,
converse is not true (example: ϕ̂ � 0 for FLRW).
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LTB phase space: key results

 Spherically symmetric Lemáıtre-Tolman-Bondi (LTB) spacetime belongs to the
LRS-II class. With LTB it is possible to explain late-time cosmological
observations without invoking any dark energy component [7, 8, 20, 21, 22].

 LTB metric: ds2 � �dt2 � R12pt,rq
1�Kprqdr

2 � R2pt, rqdΩ2.

 We get get spatially flat matter dominated epoch as a saddle fixed point
(intermediate cosmological epoch), as expected.

 Milne solutions form a line of future attractors. An expanding LTB cosmology
will asymptotically approach Milne (DS if we considered ΛLTB). This
conclusion is in agreement with those available in the literature [23, 24].

 Schawzschild interior solutions form a past attractor for expanding LTBs.

 Spatially flat solutions do not form an invariant submanifold because of
nonvanishing shear.
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LTB phase space: key results

 Vacuum solutions constitute an invariant submanifold (Sµ), as expected.
However, a particular comoving observer being on Sµ does not mean that a
neighbouring comoving observer will also be on it. Even if a particular
comoving observer experiences vacuum locally, a neighbouring observer can
experience locally a non-vanishing energy density because of a generally
non-vanishing radial perturbation µ̂.

 An important invariant submanifold is tx3, x4, y2, zu � t0, 0, 0, 0u, which
contains FLRW solutions (SFLRW). This correspond to vanishing tΣ, Eu and
vanishing tθ̂, µ̂, Σ̂, Êu. This is actually a homogeneous situation where all the
comoving observers experience the same tθ, µu, i.e. same matter density and
spacetime geometry.

 Stability of SFLRW determines the evolution of almost-FLRW LTB geometries.
We found that an almost-FLRW expanding LTB will homogenize for

0 ¤ µ
θ2  

4
9 �

?
10
9 . Qualitatively, larger matter density hinders the

homogenization of an almost-FLRW expanding LTB (assists in the
homogenization of an almost-FLRW contracting LTB).
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Outlook for future work

 Logical next step is inclusion of a cosmological constant term (ΛLTB model)
and/or a non-vanishing pressure.

 Our approach even allows for including a non-perfect fluid; still describes the
dynamics from the point of view of a comoving observer (whose worldlines may
not be geodesics anymore).

 Formal comparison between our 1+1+2-based dynamical system formulation
and the orthonormal frame approach of Uggla-wainwright and Sussman’s
quasi-local variables approach. Does there exist a one-to-one correspondence
between fixed points and invariant submanifolds?

 Cosmic no-hair theorem (an inflating spacetime isotropizes asymptotically) in
the presence of inhomogeneity.

 Particularly interesting: gravitational collapse and cosmic censorship conjecture.
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