Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	00	000	00	000	0

Do causal sets have symmetries?

Christoph Minz¹

¹Institut für Theoretische Physik, Universität Leipzig

Seventeenth Marcel Grossmann Meeting 8-12 July 2024, Pescara

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
•0	00	000	00	000	0

Electronic tools for causal sets and research in their symmetries

- Image: Argon and partially ordered sets in general),
- ② Online tool to help finding the LATEX-macros,
- ③ Preprint "Local symmetries in partially ordered sets".

[CTAN 2020] ctan.org/pkg/causets, [M 2024] c-minz.github.io, [M 2024] arXiv:2406.14533.

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
O●	OO	000	OO	000	O

- Symmetries of spacetime manifolds vs. sprinkled causal sets
- 2 Local symmetries of (finite) partially ordered sets
- 3 Causal sets of regular geometric polytopes
- 4 Local symmetries in causets

Content 00	Spacetime symmetries	Local symmetries in posets	Regular polytopes OO	Local symmetries in causets 000	Conclusion O
Sprinkling process on sp	pacetime manifolds and (pre-)compact	subsets			

• Probability space $(Q, \mathcal{B}(Q), \mu)$

•
$$Q := \left\{ S \subset M \; \middle| \; \forall U \subseteq M : |S \cap U| < \infty \right\}$$

• a probability measure μ over the Borel $\sigma\text{-algebra}\;\mathcal{B}(Q)$

A sprinkle on a (pre-)compact subset $U \subset M$

• Probability space $(Q_U, \mathcal{B}(Q_U), \mu_U)$

•
$$Q_{U,n} := \{ S \subset U \mid |S| = n \}$$

•
$$\mu_U(B_n) = \mathrm{e}^{-\rho\nu(U)} \frac{\rho^n}{n!} \nu^n \left(\Sigma_{U,n}^{-1}(B_n) \right)$$

Math. review: [Fewster-Hawkins-M-Rejzner 2021].

 $M = \mathbb{M}^2$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	●○	000	OO	000	O
Sprinkling process on sp	pacetime manifolds and (pre-)compact :	subsets			

• Probability space $(Q, \mathcal{B}(Q), \mu)$

$$\bullet \ Q := \left\{S \subset M \ \bigg| \ \forall U \mathop{\subseteq}_{\text{pre-compact}} M : |S \cap U| < \infty \right\}$$

• a probability measure μ over the Borel σ -algebra $\mathcal{B}(Q)$

A sprinkle on a (pre-)compact subset $U \subset M$

• Probability space $(Q_U, \mathcal{B}(Q_U), \mu_U)$ • $Q_{U,n} := \{S \subset U \mid |S| = n\}$ • $\mu_U(B_n) = e^{-\rho\nu(U)} \frac{\rho^n}{n!} \nu^n (\Sigma_{U,n}^{-1}(B_n))$

Math. review: [Fewster-Hawkins-M-Rejzner 2021].

4

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	●○	000	OO	000	O
Sprinkling process on sp	pacetime manifolds and (pre-)compact	subsets			

• Probability space $(Q, \mathcal{B}(Q), \mu)$

$$\bullet \ Q := \left\{S \subset M \ \bigg| \ \forall U \subseteq M : |S \cap U| < \infty \right\}$$

• a probability measure μ over the Borel $\sigma\text{-algebra}\;\mathcal{B}(Q)$

A sprinkle on a (pre-)compact subset $U \subset M$

• Probability space
$$(Q_U, \mathcal{B}(Q_U), \mu_U)$$

• $Q_{U,n} := \{S \subset U \mid |S| = n\}$
• $\mu_U(B_n) = e^{-\rho\nu(U)} \frac{\rho^n}{n!} \nu^n (\Sigma_{U,n}^{-1}(B_n))$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	●○	000	OO	000	O
Sprinkling process on sp	pacetime manifolds and (pre-)compact :	subsets			

• Probability space $(Q, \mathcal{B}(Q), \mu)$

$$\bullet \ Q := \left\{S \subset M \ \bigg| \ \forall U \subseteq M : |S \cap U| < \infty \right\}$$

• a probability measure μ over the Borel σ -algebra $\mathcal{B}(Q)$

A sprinkle on a (pre-)compact subset $U \subset M$

• Probability space $(Q_U, \mathcal{B}(Q_U), \mu_U)$ • $Q_{U,n} := \{S \subset U \mid |S| = n\}$ • $\mu_U(B_n) = e^{-\rho\nu(U)} \frac{\rho^n}{n!} \nu^n (\Sigma_{U,n}^{-1}(B_n))$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	●○	000	00	000	O
Sprinkling process on sp	pacetime manifolds and (pre-)compact	subsets			

• Probability space $(Q, \mathcal{B}(Q), \mu)$

$$\bullet \ Q := \left\{S \subset M \ \bigg| \ \forall U \mathop{\subseteq}_{\mathrm{pre-compact}} M : |S \cap U| < \infty \right\}$$

• a probability measure μ over the Borel σ -algebra $\mathcal{B}(Q)$

A sprinkle on a (pre-)compact subset $U \subset M$

• Probability space
$$(Q_U, \mathcal{B}(Q_U), \mu_U)$$

• $Q_{U,n} := \{S \subset U \mid |S| = n\}$
• $\mu_U(B_n) = e^{-\rho\nu(U)} \frac{\rho^n}{n!} \nu^n (\Sigma_{U,n}^{-1}(B_n))$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	●○	000	OO		O
Sprinkling process on sp	pacetime manifolds and (pre-)compact	subsets			

• Probability space $(Q, \mathcal{B}(Q), \mu)$

$$\bullet \ Q := \left\{S \subset M \ \bigg| \ \forall U \subseteq M : |S \cap U| < \infty \right\}$$

• a probability measure μ over the Borel σ -algebra $\mathcal{B}(Q)$

A sprinkle on a (pre-)compact subset $U \subset M$

• Probability space $(Q_U, \mathcal{B}(Q_U), \mu_U)$ • $Q_{U,n} := \{S \subset U \mid |S| = n\}$ • $\mu_U(B_n) = e^{-\rho\nu(U)} \frac{\rho^n}{n!} \nu^n (\Sigma_{U,n}^{-1}(B_n))$

Content 00	Spacetime symmetries ○●	Local symmetries in posets	Regular polytopes OO	Local symmetries in causets	Conclusion O
Invariance of the sprin	kling process under spacetime symmetri	es			

Invariance under spacetime symmetries

Let Λ be a symmetry transformation of the spacetime. For example, $\Lambda \in \mathcal{P}_+^{\uparrow}$, a proper orthochronous Poincaré transformation in Minkowski spacetime.

The volume measure is invariant:

 $\nu \circ \Lambda = \nu \qquad \qquad \mu_{\Lambda U} = \mu_U \,.$

A sprinkle in Minkowski spacetime does not pick out a preferred frame of reference [Bombelli–Henson–Sorkin 2006].

Remark: A preferred past structure assigns a unique direction to each element in a causal set, but this is a random distribution on the hyperboloid, for all elements of a sprinkle. IDable-Heath-Fewster-Reizner-Woods 2020. FHMR 2023

Content 00	Spacetime symmetries ○●	Local symmetries in posets	Regular polytopes OO	Local symmetries in causets	Conclusion O
Invariance of the sprink	ling process under spacetime symmetri	es			

Invariance under spacetime symmetries

Let Λ be a symmetry transformation of the spacetime. For example, $\Lambda \in \mathcal{P}_+^{\uparrow}$, a proper orthochronous Poincaré transformation in Minkowski spacetime.

The volume measure is invariant:

 $\nu \circ \Lambda = \nu \qquad \qquad \mu_{\Lambda U} = \mu_U \,.$

A sprinkle in Minkowski spacetime does not pick out a preferred frame of reference [Bombelli–Henson–Sorkin 2006].

Remark: A preferred past structure assigns a unique direction to each element in a causal set, but this is a random distribution on the hyperboloid, for all elements of a sprinkle. [Dable-Heath–Fewster–Rejzner–Woods 2020, FHMR 2021

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	○●	000	OO		O
Invariance of the sprin	ling process under spacetime symmetr	ies			

Invariance under spacetime symmetries

Let Λ be a symmetry transformation of the spacetime. For example, $\Lambda \in \mathcal{P}_+^{\uparrow}$, a proper orthochronous Poincaré transformation in Minkowski spacetime.

The volume measure is invariant:

 $\nu \circ \Lambda = \nu \qquad \qquad \mu_{\Lambda U} = \mu_U \,.$

A sprinkle in Minkowski spacetime does not pick out a preferred frame of reference

[Bombelli–Henson–Sorkin 2006].

Remark: A preferred past structure assigns a unique direction to each element in a causal set, but this is a random distribution on the hyperboloid, for all elements of a sprinkle. [Dable-Heath-Fewster-Reizner-Woods 2020, FHMR 2021]

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
OO	OO	●○○	OO	000	O
Definition of local symr	metries in posets				

Let P be a poset. Two elements $a,b \in P$ are singleton-symmetric if

$$L^{\pm}(a) = L^{\pm}(b) \qquad \left(\Leftrightarrow J^{\pm}_{*}(a) = J^{\pm}_{*}(b) \right).$$

- ⇒ "Singleton-symmetric" is an equivalence relation.
- \Rightarrow Taking the quotient of a poset P by this symmetry yields a *retract* $P \oslash \bullet$

Example (Antichains)

Elements of antichains are singleton-symmetric

$$\bullet = (\bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet) \oslash \bullet = \dots$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	OO	●○○	OO		O
Definition of local sym	metries in posets				

Let P be a poset. Two elements $a,b \in P$ are singleton-symmetric if

$$L^{\pm}(a) = L^{\pm}(b) \qquad \left(\Leftrightarrow J^{\pm}_{*}(a) = J^{\pm}_{*}(b) \right).$$

- ⇒ "Singleton-symmetric" is an equivalence relation.
- $\Rightarrow \text{ Taking the quotient of a poset } P \text{ by this symmetry yields a retract } P \oslash \bullet$

Example (Antichains)

Elements of antichains are singleton-symmetric

$$\bullet = (\bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet) \oslash \bullet = \dots$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	OO	●○○	OO		O
Definition of local sym	metries in posets				

Let P be a poset. Two elements $a, b \in P$ are singleton-symmetric if

$$L^{\pm}(a) = L^{\pm}(b) \qquad \left(\Leftrightarrow J^{\pm}_{*}(a) = J^{\pm}_{*}(b) \right).$$

- ⇒ "Singleton-symmetric" is an equivalence relation.
- \Rightarrow Taking the quotient of a poset P by this symmetry yields a retract $P \oslash \bullet$

Example (Antichains)

Elements of antichains are singleton-symmetric

$$\bullet = (\bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet \bullet) \oslash \bullet = \dots$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	OO	●○○	OO		O
Definition of local sym	metries in posets				

Let P be a poset. Two elements $a,b\in P$ are singleton-symmetric if

$$L^{\pm}(a) = L^{\pm}(b) \qquad \left(\Leftrightarrow J^{\pm}_{*}(a) = J^{\pm}_{*}(b) \right).$$

- ⇒ "Singleton-symmetric" is an equivalence relation.
- \Rightarrow Taking the quotient of a poset P by this symmetry yields a retract $P \oslash \bullet$

Example (Antichains)

Elements of antichains are singleton-symmetric

$$\bullet = (\bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet) \oslash \bullet = (\bullet \bullet \bullet \bullet) \oslash \bullet = \dots$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
OO	OO	●○○	OO	000	O
Definition of local symm	netries in posets				

Let P be a poset. Two elements $a, b \in P$ are singleton-symmetric if

$$L^{\pm}(a) = L^{\pm}(b) \qquad \left(\Leftrightarrow J^{\pm}_{*}(a) = J^{\pm}_{*}(b) \right).$$

- ⇒ "Singleton-symmetric" is an equivalence relation.
- \Rightarrow Taking the quotient of a poset P by this symmetry yields a retract $P \oslash \bullet$

Example (Antichains)

Elements of antichains are singleton-symmetric

$$\boldsymbol{\cdot}=(\boldsymbol{\cdot}\boldsymbol{\cdot})\oslash\boldsymbol{\cdot}=(\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{\cdot})\oslash\boldsymbol{\cdot}=(\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{\cdot}\boldsymbol{\cdot})\oslash\boldsymbol{\cdot}=\ldots.$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion	
00	OO	O●○	00	000	O	
Definition of local symmetries in posets						

Let Q be a finite poset, and $r \in \mathbb{N}$, r > 2. For an

Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Content 00	Spacetime symmetries	Local symmetries in posets ○●○	Regular polytopes OO	Local symmetries in causets	Conclusion O			
Definition of local symr	Definition of local symmetries in posets							

Let Q be a finite poset, and $r \in \mathbb{N}$, $r \ge 2$. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ .

The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \,\subset \, \Sigma(\sigma)$ with $S_i \cong Q$, and they are the *smallest, maximally ordered* subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i < r)$ that cover $\Sigma(\sigma)$. For $a, b \in P$, $a \sim_0 b$ if a = b; $a \sim_1 b$ if $\exists A, B \subset P$ with (Q, r)-generator σ such that $a \in A$ and $b = \sigma^q(a) \in B = \sigma^q(A)$ for some $1 \le q < r$; $a \sim_1 b$ if $a \prec_i : b$ for any i < r but $\exists c \in P$ and

 $a \sim_n b$ if $a \not\sim_j b$ for any j < n but $\exists c \in P$ and j < n such that $a \sim_j c$ and $c \sim_{j-n} b$; a is (Q, r)-symmetric to b if there exists an $n \in \mathbb{N}_0$ such that $a \sim_r b$ Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Content 00	Spacetime symmetries	Local symmetries in posets ○●○	Regular polytopes OO	Local symmetries in causets	Conclusion O
Definition of local symr	metries in posets				

Let Q be a finite poset, and $r \in \mathbb{N}$, $r \geq 2$. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ . The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \subset \Sigma(\sigma)$ with $S_i \cong Q$, and they are the smallest, maximally ordered subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i \le r)$ that cover $\Sigma(\sigma)$.

Quotient by all (Q, r)-symmetries gives a *retract* $P \otimes_r Q$ (and we drop the index if r = 2).

Content 00	Spacetime symmetries	Local symmetries in posets ○●○	Regular polytopes OO	Local symmetries in causets	Conclusion O
Definition of local symr	metries in posets				

Let Q be a finite poset, and $r \in \mathbb{N}$, $r \geq 2$. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ . The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \subset \Sigma(\sigma)$ with $S_i \cong Q$, and they are the smallest, maximally ordered subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i \le r)$ that cover $\Sigma(\sigma)$. For $a, b \in P$, $a \sim_0 b$ if a = b:

a is (Q, r)-symmetric to b if there exists an

Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Content 00	Spacetime symmetries	Local symmetries in posets ○●○	Regular polytopes OO	Local symmetries in causets	Conclusion O
Definition of local symr	metries in posets				

Let Q be a finite poset, and $r \in \mathbb{N}$, $r \geq 2$. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ . The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \subset \Sigma(\sigma)$ with $S_i \cong Q$, and they are the smallest, maximally ordered subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i \le r)$ that cover $\Sigma(\sigma)$. For $a, b \in P$, $a \sim_0 b$ if a = b: $a \sim_1 b$ if $\exists A, B \subset P$ with (Q, r)-generator σ such that $a \in A$ and $b = \sigma^q(a) \in B = \sigma^q(A)$ for some $1 \le q \le r$:

j < n such that $a \sim_j c$ and $c \sim_{j-n} b$; a is (Q, r)-symmetric to b if there exists an $n \in \mathbb{N}_0$ such that $a \sim_n b$. Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Content 00	Spacetime symmetries	Local symmetries in posets ○●○	Regular polytopes OO	Local symmetries in causets	Conclusion O
Definition of local symr	metries in posets				

Let Q be a finite poset, and $r \in \mathbb{N}$, $r \geq 2$. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ . The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \subset \Sigma(\sigma)$ with $S_i \cong Q$, and they are the smallest, maximally ordered subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i \le r)$ that cover $\Sigma(\sigma)$. For $a, b \in P$, $a \sim_0 b$ if a = b: $a \sim_1 b$ if $\exists A, B \subset P$ with (Q, r)-generator σ such that $a \in A$ and $b = \sigma^q(a) \in B = \sigma^q(A)$ for some $1 \le q \le r$: $a \sim_n b$ if $a \not\sim_i b$ for any j < n but $\exists c \in P$ and j < n such that $a \sim_i c$ and $c \sim_{i-n} b$;

Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Content 00	Spacetime symmetries	Local symmetries in posets ○●○	Regular polytopes OO	Local symmetries in causets	Conclusion O
Definition of local symr	metries in posets				

Let Q be a finite poset, and $r \in \mathbb{N}$, $r \geq 2$. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ . The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \subset \Sigma(\sigma)$ with $S_i \cong Q$, and they are the smallest, maximally ordered subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i \le r)$ that cover $\Sigma(\sigma)$. For $a, b \in P$, $a \sim_0 b$ if a = b: $a \sim_1 b$ if $\exists A, B \subset P$ with (Q, r)-generator σ such that $a \in A$ and $b = \sigma^q(a) \in B = \sigma^q(A)$ for some $1 \le q \le r$: $a \sim_n b$ if $a \not\sim_i b$ for any j < n but $\exists c \in P$ and j < n such that $a \sim_i c$ and $c \sim_{i-n} b$; a is (Q, r)-symmetric to b if there exists an $n \in \mathbb{N}_0$ such that $a \sim_n b$.

Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	OO	○●○	OO		O
Definition of local symmetries in posets					

Let Q be a finite poset, and $r \in \mathbb{N}$, r > 2. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ . The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \subset \Sigma(\sigma)$ with $S_i \cong Q$, and they are the smallest, maximally ordered subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i \le r)$ that cover $\Sigma(\sigma)$. For $a, b \in P$, $a \sim_0 b$ if a = b: $a \sim_1 b$ if $\exists A, B \subset P$ with (Q, r)-generator σ such that $a \in A$ and $b = \sigma^q(a) \in B = \sigma^q(A)$ for some $1 \le q \le r$: $a \sim_n b$ if $a \not\sim_i b$ for any j < n but $\exists c \in P$ and j < n such that $a \sim_i c$ and $c \sim_{i-n} b$; a is (Q, r)-symmetric to b if there exists an $n \in \mathbb{N}_0$ such that $a \sim_n b$.

Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
OO	OO	O●○	OO		O
Definition of local symmetries in posets					

Let Q be a finite poset, and $r \in \mathbb{N}$, r > 2. For an automorphism $\sigma \in \operatorname{Aut}(P)$, let $\Sigma(\sigma) \subseteq P$ denote the subset of all elements that are not fixed by σ . The automor. is a (Q, r)-generator if there exists a sequence of r subsets $S_i \subset \Sigma(\sigma)$ with $S_i \cong Q$, and they are the smallest, maximally ordered subsets of $\Sigma(\sigma)$ with $\sigma(S_i) = S_{i+1 \mod r}$ $(0 \le i \le r)$ that cover $\Sigma(\sigma)$. For $a, b \in P$, $a \sim_0 b$ if a = b: $a \sim_1 b$ if $\exists A, B \subset P$ with (Q, r)-generator σ such that $a \in A$ and $b = \sigma^q(a) \in B = \sigma^q(A)$ for some $1 \le q \le r$: $a \sim_n b$ if $a \not\sim_i b$ for any j < n but $\exists c \in P$ and j < n such that $a \sim_i c$ and $c \sim_{i-n} b$; a is (Q, r)-symmetric to b if there exists an $n \in \mathbb{N}_0$ such that $a \sim_n b$.

Quotient by all (Q, r)-symmetries gives a *retract* $P \oslash_r Q$ (and we drop the index if r = 2).

Content 00	Spacetime symmetries	Local symmetries in posets	Regular polytopes 00	Local symmetries in causets 000	Conclusion O
Classification of posets with local symmetries					

For a finite poset Q and $r \in \mathbb{N}$, a poset P is locally (Q, r)-symmetric and (Q, r)-retractable to the poset \tilde{P} if $\tilde{P} = P \oslash_r Q \neq P$. The poset P is locally symmetric if there exists some finite poset Q and $r \geq 2$ such that P is locally (Q, r)-symmetric, P is retractable to the poset \tilde{P} (the retract of P) if there exist some sequence of (Q_i, r_i) -symmetries such that $\tilde{P} = P \oslash_{r_1} Q_1 \oslash_{r_2} Q_2 \oslash_{r_3} \ldots \neq P$, and P is

All posets that are (Q, r)-retractable to some

poset R form a class of symmetry extensions

 $[R \odot_r Q] := \{ P \in \mathfrak{P} \mid P \oslash_r Q = R \neq P \} .$

Two elements are prime (Q, r)-symmetric if they are not (Q', r')-symmetric by another smaller $Q' \subset Q$ or smaller r' < r. For example:

Example (Posets of bipartite graphs) $[I \odot \bullet]' = \left\{ \Lambda, \gamma, \Lambda, \chi, \chi, \gamma, \gamma, \ldots \right\}$

Content 00	Spacetime symmetries OO	Local symmetries in posets	Regular polytopes OO	Local symmetries in causets	Conclusion O
Classification of posets with local symmetries					

For a finite poset Q and $r \in \mathbb{N}$, a poset P is locally (Q, r)-symmetric and (Q, r)-retractable to the poset \tilde{P} if $\tilde{P} = P \otimes_r Q \neq P$. The poset P is locally symmetric if there exists some finite poset Q and $r \geq 2$ such that P is locally

(Q, r)-symmetric, P is *retractable* to the poset \overline{P} (the retract of P) if there exist some sequence of (Q_i, r_i) -symmetries such that

 $\hat{P} = P \otimes_{r_1} Q_1 \otimes_{r_2} Q_2 \otimes_{r_3} \ldots \neq P$, and P is locally unsymmetric if it is not locally symmetric.

All posets that are (Q, r)-retractable to some poset R form a class of symmetry extensions

 $[R \odot_r Q] := \{ P \in \mathfrak{P} \mid P \oslash_r Q = R \neq P \} .$

Two elements are prime (Q, r)-symmetric if they are not (Q', r')-symmetric by another smaller $Q' \subset Q$ or smaller r' < r. For example:

$$\mathbb{M} \otimes \cdots = \mathbb{M} \otimes \mathbb{A} = \mathbb{M} \otimes \mathfrak{l} = \mathfrak{l}$$
$$\mathbb{M} \otimes \cdot \cdot = \mathfrak{l}.$$

Example (Posets of bipartite graphs)

$$[\mathbf{I} \odot \bullet]' = \left\{ \mathbf{A}, \mathbf{V}, \mathbf{A}, \mathbf{M}, \mathbf{V}, \mathbf{V}, \mathbf{M}, \mathbf{M}, \mathbf{V}, \mathbf{M}, \mathbf{M},$$

Content 00	Spacetime symmetries	Local symmetries in posets	Regular polytopes 00	Local symmetries in causets 000	Conclusion O
Classification of posets with local symmetries					

For a finite poset Q and $r \in \mathbb{N}$, a poset P is locally (Q, r)-symmetric and (Q, r)-retractable to the poset \tilde{P} if $\tilde{P} = P \oslash_r Q \neq P$. The poset P is locally symmetric if there exists some finite poset Q and $r \geq 2$ such that P is locally (Q, r)-symmetric, P is retractable to the poset \tilde{P} (the retract of P) if there exist some sequence of (Q_i, r_i) -symmetries such that $\hat{P} = P \oslash_{r_1} Q_1 \oslash_{r_2} Q_2 \oslash_{r_3} \ldots \neq P$, and P is locally unsymmetric if it is not locally symmetric.

All posets that are (Q, r)-retractable to some poset R form a class of symmetry extensions

 $[R \odot_r Q] := \{ P \in \mathfrak{P} \mid P \oslash_r Q = R \neq P \} .$

$$\mathbb{M} \circ \cdots = \mathbb{M} \circ \mathbb{A} = \mathbb{M} \circ \mathfrak{i} = \mathfrak{i}$$
$$\mathbb{M} \circ' \cdot = \mathfrak{i}$$

Example (Posets of bipartite graphs)
$$[I \odot \bullet]' = \left\{ \Lambda, \Psi, \Lambda, H, \Psi, \Psi, \\ \Lambda, M, \Psi, \Psi, \Psi, \cdots \right\}.$$

Content 00	Spacetime symmetries	Local symmetries in posets	Regular polytopes 00	Local symmetries in causets 000	Conclusion O
Classification of posets with local symmetries					

For a finite poset Q and $r \in \mathbb{N}$, a poset P is locally (Q, r)-symmetric and (Q, r)-retractable to the poset \tilde{P} if $\tilde{P} = P \oslash_r Q \neq P$. The poset P is locally symmetric if there exists some finite poset Q and $r \ge 2$ such that P is locally (Q, r)-symmetric, P is retractable to the poset \tilde{P} (the retract of P) if there exist some sequence of (Q_i, r_i) -symmetries such that $\hat{P} = P \oslash_{r_1} Q_1 \oslash_{r_2} Q_2 \oslash_{r_3} \ldots \neq P$, and P is locally unsymmetric if it is not locally symmetric.

All posets that are (Q, r)-retractable to some poset R form a class of symmetry extensions

 $[R \odot_r Q] := \{ P \in \mathfrak{P} \mid P \oslash_r Q = R \neq P \} .$

$$\mathbb{M} \circ \cdots = \mathbb{M} \circ \mathbb{A} = \mathbb{M} \circ \mathfrak{i} = \mathfrak{i}$$
$$\mathbb{M} \circ' \cdot = \mathfrak{i}$$

Example (Posets of bipartite graphs)
$$[\mathfrak{t} \odot \bullet]' = \left\{ \Lambda, \vee, \Lambda, \chi, \chi, \vee, \\ \Lambda, \chi, \chi, \vee, \vee \right\}.$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	OO	○○●	00		O
Classification of posets with local symmetries					

For a finite poset Q and $r \in \mathbb{N}$, a poset P is locally (Q, r)-symmetric and (Q, r)-retractable to the poset \tilde{P} if $\tilde{P} = P \oslash_r Q \neq P$. The poset P is locally symmetric if there exists some finite poset Q and $r \ge 2$ such that P is locally (Q, r)-symmetric, P is retractable to the poset \tilde{P} (the retract of P) if there exist some sequence of (Q_i, r_i) -symmetries such that $\hat{P} = P \oslash_{r_1} Q_1 \oslash_{r_2} Q_2 \oslash_{r_3} \ldots \neq P$, and P is

locally unsymmetric if it is not locally symmetric.

All posets that are (Q, r)-retractable to some poset R form a class of symmetry extensions

 $[R \odot_r Q] := \{ P \in \mathfrak{P} \mid P \oslash_r Q = R \neq P \} .$

$$\mathbb{M} \circ \cdots = \mathbb{M} \circ \mathbb{A} = \mathbb{M} \circ \mathfrak{i} = \mathfrak{i}$$
$$\mathbb{M} \circ \mathbf{i} \cdot \mathfrak{i} = \mathfrak{i}$$

$$[\mathfrak{l} \odot \bullet]' = \left\{ \Lambda, \bigvee, \Lambda, \widecheck{\mathfrak{A}}, \bigvee, \bigvee, \ldots \right\}.$$

Content 00	Spacetime symmetries OO	Local symmetries in posets	Regular polytopes 00	Local symmetries in causets	Conclusion O
Classification of posets with local symmetries					

For a finite poset Q and $r \in \mathbb{N}$, a poset P is locally (Q, r)-symmetric and (Q, r)-retractable to the poset \tilde{P} if $\tilde{P} = P \oslash_r Q \neq P$. The poset P is locally symmetric if there exists some finite poset Q and $r \ge 2$ such that P is locally (Q, r)-symmetric, P is retractable to the poset \tilde{P} (the retract of P) if there exist some sequence of

 (Q_i, r_i) -symmetries such that $\dot{P} = P \oslash_{r_1} Q_1 \oslash_{r_2} Q_2 \oslash_{r_3} \dots \neq P$, and P is *locally unsymmetric* if it is not locally symmetric.

All posets that are (Q, r)-retractable to some poset R form a class of symmetry extensions

 $[R \odot_r Q] := \{ P \in \mathfrak{P} \mid P \oslash_r Q = R \neq P \} .$

xample (Posets of bipartite graphs)
$$[\mathfrak{l} \odot \bullet]' = \left\{ \Lambda, \vee, \Lambda, \varkappa, \vee, \vee, \\ \Lambda, \chi, \chi, \vee, \vee, \ldots \right\}.$$

Content 00	Spacetime symmetries OO	Local symmetries in posets	Regular polytopes 00	Local symmetries in causets	Conclusion O
Classification of posets with local symmetries					

For a finite poset Q and $r \in \mathbb{N}$, a poset P is locally (Q, r)-symmetric and (Q, r)-retractable to the poset \tilde{P} if $\tilde{P} = P \otimes_r Q \neq P$. The poset P is locally symmetric if there exists some finite poset Q and $r \geq 2$ such that P is locally (Q, r)-symmetric, P is retractable to the poset \tilde{P}

(the retract of P) if there exist some sequence of (Q_i, r_i) -symmetries such that $\hat{P} = P \oslash_{r_i} Q_1 \oslash_{r_2} Q_2 \oslash_{r_2} \dots \neq P$, and P is

 $r = r \otimes_{r_1} Q_1 \otimes_{r_2} Q_2 \otimes_{r_3} \ldots \neq r$, and r is *locally unsymmetric* if it is not locally symmetric.

All posets that are (Q, r)-retractable to some poset R form a class of symmetry extensions

 $[R \odot_r Q] := \{ P \in \mathfrak{P} \mid P \oslash_r Q = R \neq P \} .$

Two elements are prime (Q, r)-symmetric if they are not (Q', r')-symmetric by another smaller $Q' \subset Q$ or smaller r' < r. For example:

Example (Posets of bipartite graphs)

$$\begin{split} [\mathfrak{t}\odot \bullet]' = \Big\{\Lambda, \Psi, \Lambda, M, \Psi, \Psi, \\ \Lambda, M, \Psi, \Psi, \Psi, \cdots \Big\}. \end{split}$$

Content	Spacetime s	y
00	00	

Regular polytopes

Local symmetries in causets

Conclusion O

Example (Causal sets of polygons)

The (regular) polygons also have a geometrical representation as causal sets embedded in (1+2)-dimensional Minkowski spacetime. Imagine a regular polygon embedded in the Cauchy slice and light pulses being emitted from all corners at t = 0. The light pulses propagate and meet pairwise at the central points of the polygon edges, later all pulses meet at the centre of the polygon (2-face).

Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons

Content	Spacetime
00	00

Regular polytopes

Local symmetries in causets

Conclusion

Example (Causal sets of polygons)

The (regular) polygons also have a geometrical representation as causal sets embedded in (1+2)-dimensional Minkowski spacetime. Imagine a regular polygon embedded in the Cauchy slice and light pulses being emitted from all corners at t = 0. The light pulses propagate and meet pairwise at the central points of the polygon edges, later all pulses meet at the centre of the polygon (2-face).

Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons

Content	Spacetim
00	00

Regular polytopes

Local symmetries in causets

Conclusion

Example (Causal sets of polygons)

The (regular) polygons also have a geometrical representation as causal sets embedded in (1+2)-dimensional Minkowski spacetime. Imagine a regular polygon embedded in the Cauchy slice and light pulses being emitted from all corners at t = 0. The light pulses propagate and meet pairwise at the central points of the polygon edges, later all pulses meet at the centre of the polygon (2-face).

Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons

Content	Spacetin
00	00

Regular polytopes

Local symmetries in causets

Conclusion

Example (Causal sets of polygons)

The (regular) polygons also have a geometrical representation as causal sets embedded in (1+2)-dimensional Minkowski spacetime. Imagine a regular polygon embedded in the Cauchy slice and light pulses being emitted from all corners at t = 0. The light pulses propagate and meet pairwise at the central points of the polygon edges, later all pulses meet at the centre of the polygon (2-face).

Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons

Content	Spacetim
00	00

Regular polytopes

Local symmetries in causets

e symmetries Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons

Content	Spacetime	sy
00	00	

Regular polytopes ●○ Local symmetries in causets

Conclusion

Example (Causal sets of polygons)

The (regular) polygons also have a geometrical representation as causal sets embedded in (1+2)-dimensional Minkowski spacetime. Imagine a regular polygon embedded in the Cauchy slice and light pulses being emitted from all corners at t = 0. The light pulses propagate and meet pairwise at the central points of the polygon edges, later all pulses meet at the centre of the polygon (2-face).

Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons

Content	Spacetime	S
00	00	

Regular polytopes

Local symmetries in causets

Conclusion

Example (Causal sets of polygons)

The (regular) polygons also have a geometrical representation as causal sets embedded in (1+2)-dimensional Minkowski spacetime. Imagine a regular polygon embedded in the Cauchy slice and light pulses being emitted from all corners at t = 0. The light pulses propagate and meet pairwise at the central points of the polygon edges, later all pulses meet at the centre of the polygon (2-face).

Posets of polygons

Content	Spacetime
00	00

Regular polytopes

Local symmetries in causets

Conclusion

Example (Causal sets of polygons)

The (regular) polygons also have a geometrical representation as causal sets embedded in (1+2)-dimensional Minkowski spacetime. Imagine a regular polygon embedded in the Cauchy slice and light pulses being emitted from all corners at t = 0. The light pulses propagate and meet pairwise at the central points of the polygon edges, later all pulses meet at the centre of the polygon (2-face).

Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion	
00	OO	000	○●		O	
Posets of simplices that embed $(1+d)$ -dimensional Minkowski spacetime						

Theorem (Simplices)

The d-simplex is (d-2)-simplex-retractable to the (d+2)-chain.

Theorem (Preservation of layers)

For any (Q, r)-symmetric poset P, the symmetry quotient P/(Q, r) preserves layers.

Christoph Minz (Leipzig)

Do causal sets have symmetries?

Content 00	Spacetime symmetries OO	Local symmetries in posets	Regular polytopes ○●	Local symmetries in causets	Conclusion O	
Posets of simplices that embed $(1+d)$ -dimensional Minkowski spacetime						

Theorem (Simplices)

The *d*-simplex is (d-2)-simplex-retractable to the (d+2)-chain.

Theorem (Preservation of layers)

For any (Q, r)-symmetric poset P, the symmetry quotient P/(Q, r) preserves layers.

Christoph Minz (Leipzig)

Content 00	Spacetime symmetries OO	Local symmetries in posets	Regular polytopes ○●	Local symmetries in causets	Conclusion O	
Posets of simplices that embed $(1+d)$ -dimensional Minkowski spacetime						

Theorem (Simplices)

The *d*-simplex is (d-2)-simplex-retractable to the (d+2)-chain.

Theorem (Preservation of layers)

For any (Q, r)-symmetric poset P, the symmetry quotient P/(Q, r) preserves layers.

Content 00	Spacetime symmetries OO	Local symmetries in posets	Regular polytopes 00	Local symmetries in causets	Conclusion O
Local symmetries vs. Kleitman–Rothschild orders					

In the large n behaviour, posets with a small number of layers dominate [Kleitman-Rothschild 1975].

Example (Some Kleitman–Rothschild orders have local symmetries)

Fig. 1 from [Carlip–Carlip–Surya 2023] is singleton-symmetric, retracting to the (0, 1, 2)-faces subset of the 3-simplex, which in turn retracts to the 3-chain,

$$\langle \mathbf{A} = \mathbf{A} \otimes \mathbf{A} \otimes \mathbf{A} \otimes \mathbf{A} = \mathbf{A} \otimes \mathbf{A}$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion	
00	OO	000	OO		O	
Local symmetries vs. Kleitman–Rothschild orders						

In the large n behaviour, posets with a small number of layers dominate [Kleitman-Rothschild 1975].

Example (Some Kleitman-Rothschild orders have local symmetries)

Fig. 1 from [Carlip–Carlip–Surya 2023] is singleton-symmetric, retracting to the (0, 1, 2)-faces subset of the 3-simplex, which in turn retracts to the 3-chain,

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion	
00	OO	000	OO		O	
Local symmetries vs. Kleitman–Rothschild orders						

In the large n behaviour, posets with a small number of layers dominate [Kleitman-Rothschild 1975].

Example (Some Kleitman-Rothschild orders have local symmetries)

Fig. 1 from [Carlip–Carlip–Surya 2023] is singleton-symmetric, retracting to the (0, 1, 2)-faces subset of the 3-simplex, which in turn retracts to the 3-chain,

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion
00	OO	000	OO	○●○	O
Local symmetries vs. s	prinkled causal sets				

For any $k \in \mathbb{N}_0$, a poset P is k-stable locally unsymmetric if, for every subset $S \subseteq P$ that has cardinality $0 \le |S| \le k$, the poset $P \smallsetminus S$ is locally unsymmetric. A poset P is total locally unsymmetric if $P \smallsetminus S$ is k-stable locally unsymmetric for every $k \le |P|$.

Example

Any chain posets (total order) is total locally unsymmetric.

Posets with more layers are more likely to be (total) locally unsymmetric.

Numbers by cardinality (row) and layer (column).

- u_n Number of all locally unsymmetric posets.
- s_n Number of all 1-stable locally unsymmetric posets.

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion		
00	OO		OO	○●○	O		
Local symmetries vs. sprinkled causal sets							

For any $k \in \mathbb{N}_0$, a poset P is k-stable locally unsymmetric if, for every subset $S \subseteq P$ that has cardinality $0 \le |S| \le k$, the poset $P \smallsetminus S$ is locally unsymmetric. A poset P is total locally unsymmetric if $P \smallsetminus S$ is k-stable locally unsymmetric for every k < |P|.

Example

Any chain posets (total order) is total locally unsymmetric.

Posets with more layers are more likely to be (total) locally unsymmetric.

Numbers by cardinality (row) and layer (column).

- u_n Number of all locally unsymmetric posets.
- s_n Number of all 1-stable locally unsymmetric posets.

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion			
00	OO	000	00	○●○	O			
Local symmetries vs. sprinkled causal sets								

For any $k \in \mathbb{N}_0$, a poset P is k-stable locally unsymmetric if, for every subset $S \subseteq P$ that has cardinality $0 \le |S| \le k$, the poset $P \smallsetminus S$ is locally unsymmetric. A poset P is total locally unsymmetric if $P \smallsetminus S$ is k-stable locally unsymmetric for every k < |P|.

Example

Any chain posets (total order) is total locally unsymmetric.

Posets with more layers are more likely to be (total) locally unsymmetric.

Numbers by cardinality (row) and layer (column).

- u_n Number of all locally unsymmetric posets.
- s_n Number of all 1-stable locally unsymmetric posets.

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion			
00	OO	000	00	○●○	O			
Local symmetries vs. sprinkled causal sets								

For any $k \in \mathbb{N}_0$, a poset P is k-stable locally unsymmetric if, for every subset $S \subseteq P$ that has cardinality $0 \le |S| \le k$, the poset $P \smallsetminus S$ is locally unsymmetric. A poset P is total locally unsymmetric if $P \smallsetminus S$ is k-stable locally unsymmetric for every k < |P|.

Example

Any chain posets (total order) is total locally unsymmetric.

Posets with more layers are more likely to be (total) locally unsymmetric.

Numbers by cardinality (row) and layer (column).

- u_n Number of all locally unsymmetric posets.
- s_n Number of all 1-stable locally unsymmetric posets.

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion				
00	OO	000	OO	○●○	O				
ocal symmetries vs. sprinkled causal sets									

For any $k \in \mathbb{N}_0$, a poset P is k-stable locally unsymmetric if, for every subset $S \subseteq P$ that has cardinality $0 \le |S| \le k$, the poset $P \smallsetminus S$ is locally unsymmetric. A poset P is total locally unsymmetric if $P \smallsetminus S$ is k-stable locally unsymmetric for every k < |P|.

Example

Any chain posets (total order) is total locally unsymmetric.

Posets with more layers are more likely to be (total) locally unsymmetric.

Nun	nbers	by ca	ardinality	′ (rov	v) and	layer	(co	lumn).
	1	2	3	4	5	6	7	p_n
1	1							1
2	1	1						2
3	1	3	1					5
4	1	8	6	1				16
5	1	20	31	10	1			63
6	1	55	162	84	15	1		318
7	1	163	940	734	185	21	1	2045

- u_n Number of all locally unsymmetric posets.
- s_n Number of all 1-stable locally unsymmetric posets.

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion				
00	OO	000	OO	○●○	O				
ocal symmetries vs. sprinkled causal sets									

For any $k \in \mathbb{N}_0$, a poset P is k-stable locally unsymmetric if, for every subset $S \subseteq P$ that has cardinality $0 \le |S| \le k$, the poset $P \smallsetminus S$ is locally unsymmetric. A poset P is total locally unsymmetric if $P \smallsetminus S$ is k-stable locally unsymmetric for every k < |P|.

Example

Any chain posets (total order) is total locally unsymmetric.

Posets with more layers are more likely to be (total) locally unsymmetric.

Nun	nbers	by ca	rdinali	ty (rov	v) and	layer	(co	lumn).
	1	2	3	4	5	6	7	$ $ u_n
1	1							1
2	0	1						1
3	0	1	1					2
4	0	1	3	1				5
5	0	1	11	6	1			19
6	0	3	47	41	10	1		102
7	0	9	266	332	106	15	1	729

- u_n Number of all locally unsymmetric posets.
- s_n Number of all 1-stable locally unsymmetric posets.

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion				
00	OO	000	OO	○●○	O				
ocal symmetries vs. sprinkled causal sets									

For any $k \in \mathbb{N}_0$, a poset P is k-stable locally unsymmetric if, for every subset $S \subseteq P$ that has cardinality $0 \le |S| \le k$, the poset $P \smallsetminus S$ is locally unsymmetric. A poset P is total locally unsymmetric if $P \smallsetminus S$ is k-stable locally unsymmetric for every k < |P|.

Example

Any chain posets (total order) is total locally unsymmetric.

Posets with more layers are more likely to be (total) locally unsymmetric.

Nun	nbers	by car	dinalit	y (row) and	layer	(co	lumn).
	1	2	3	4	5	6	7	s_n
1	1							1
2	0	1						1
3	0	0	1					1
4	0	0	1	1				2
5	0	0	0	3	1			4
6	0	0	2	8	6	1		17
7	0	0	4	37	36	10	1	88

- u_n Number of all locally unsymmetric posets.
- s_n Number of all 1-stable locally unsymmetric posets.

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion			
00	OO	000	OO	○O●	O			
Local symmetries vs. s	ocal symmetries vs. sprinkled causal sets							

A sprinkle in *d*-dimensional Minkowski spacetime is total locally unsymmetric with probability 1.

Proof: Let S be a random sprinkle in Minkowski spacetime \mathbb{M}^{1+d} , take two separated elements. The probability for I_t to contain n elements is

$$\Pr\left(|\mathsf{S} \cap I_t| = 0\right) = \frac{\rho^n \nu(I_t)^n}{n!} \mathrm{e}^{-\rho\nu(I_t)}.$$

Content 00	Spacetime symmetries	Local symmetries in posets 000	Regular polytopes 00	Local symmetries in causets	Conclusion O			
Local symmetries vs. s	.ocal symmetries vs. sprinkled causal sets							

A sprinkle in *d*-dimensional Minkowski spacetime is total locally unsymmetric with probability 1.

Proof: Let S be a random sprinkle in Minkowski spacetime \mathbb{M}^{1+d} , take two separated elements. The probability for I_t to contain n elements is

$$\Pr\left(|\mathsf{S} \cap I_t| = 0\right) = \frac{\rho^n \nu(I_t)^n}{n!} \mathrm{e}^{-\rho\nu(I_t)}$$

Content 00	Spacetime symmetries OO	Local symmetries in posets	Regular polytopes OO	Local symmetries in causets	Conclusion O		
Local symmetries vs. s	Local symmetries vs. sprinkled causal sets						

A sprinkle in *d*-dimensional Minkowski spacetime is total locally unsymmetric with probability 1.

Proof: Let S be a random sprinkle in Minkowski spacetime \mathbb{M}^{1+d} , take two separated elements. The probability for I_t to contain n elements is

$$\Pr\left(|\mathsf{S} \cap I_t| = 0\right) = \frac{\rho^n \nu(I_t)^n}{n!} \mathrm{e}^{-\rho\nu(I_t)}$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion		
00		000	00	○O●	O		
Local symmetries vs. s	.ocal symmetries vs. sprinkled causal sets						

A sprinkle in *d*-dimensional Minkowski spacetime is total locally unsymmetric with probability 1.

Proof: Let S be a random sprinkle in Minkowski spacetime \mathbb{M}^{1+d} , take two separated elements. The probability for I_t to contain n elements is

$$\Pr\left(|\mathsf{S} \cap I_t| = 0\right) = \frac{\rho^n \nu(I_t)^n}{n!} \mathrm{e}^{-\rho\nu(I_t)}$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion			
00	OO	000	OO	○O●	O			
Local symmetries vs. sp	Local symmetries vs. sprinkled causal sets							

A sprinkle in *d*-dimensional Minkowski spacetime is total locally unsymmetric with probability 1.

Proof: Let S be a random sprinkle in Minkowski spacetime \mathbb{M}^{1+d} , take two separated elements. The probability for I_t to contain n elements is

$$\Pr\left(|\mathsf{S} \cap I_t| = 0\right) = \frac{\rho^n \nu(I_t)^n}{n!} \mathrm{e}^{-\rho\nu(I_t)}.$$

Content 00	Spacetime symmetries OO	Local symmetries in posets	Regular polytopes OO	Local symmetries in causets	Conclusion O		
Local symmetries vs. s	Local symmetries vs. sprinkled causal sets						

A sprinkle in *d*-dimensional Minkowski spacetime is total locally unsymmetric with probability 1.

Proof: Let S be a random sprinkle in Minkowski spacetime \mathbb{M}^{1+d} , take two separated elements. The probability for I_t to contain n elements is

$$\Pr\left(|\mathsf{S} \cap I_t| = 0\right) = \frac{\rho^n \nu(I_t)^n}{n!} \mathrm{e}^{-\rho\nu(I_t)}.$$

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion		
00	OO	000	OO	000	•		
Summary and advertiser	ummary and advertisement						

(Infinite) sprinkles usually do not have local symmetries.

Are local symmetries relevant or even necessary to model the very early universe in causal set theory?

Advertisement: LATEX-package 'causets'

Is part of complete distributions so that it is, for example, available on Overleaf. Just load the package with \usepackage{causets}.

Example (Local symmetries of the wedge) To get $\Lambda \oslash \bullet = 1$, write $\gamma_1, 3$ \oslash \pcauset{1} = \pcauset{1,2}

Online tool to support the use of the package

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion			
00	00	000	OO	000	•			
Summary and advertise	ummary and advertisement							

(Infinite) sprinkles usually do not have local symmetries.

Are local symmetries relevant or even necessary to model the very early universe in causal set theory?

Advertisement: LATEX-package 'causets'

Is part of complete distributions so that it is, for example, available on Overleaf. Just load the package with \usepackage{causets}.

Example (Local symmetries of the wedge) To get $\land \oslash \cdot = 1$, write $\colored \colored \colore$

Online tool to support the use of the package

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion			
00	OO	000	OO	000	•			
Summary and advertise	ummary and advertisement							

(Infinite) sprinkles usually do not have local symmetries.

Are local symmetries relevant or even necessary to model the very early universe in causal set theory?

Advertisement: LATEX-package 'causets'

Is part of complete distributions so that it is, for example, available on Overleaf. Just load the package with \usepackage{causets}.

Online tool to support the use of the package

Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	Conclusion			
00	00	000	OO	000	•			
Summary and advertiser	ummary and advertisement							

(Infinite) sprinkles usually do not have local symmetries.

Are local symmetries relevant or even necessary to model the very early universe in causal set theory?

Advertisement: LATEX-package 'causets'

Is part of complete distributions so that it is, for example, available on Overleaf. Just load the package with \usepackage{causets}.

```
Example (Local symmetries of the wedge)
To get \Lambda \oslash \cdot = 1, write
\rhocauset{2,1,3} \oslash \pcauset{1} = \rhocauset{1,2}
```

Online tool to support the use of the package

Summary and a	advertisement				
00	00	000	00	000	•
Content	Spacetime symmetries	Local symmetries in posets	Regular polytopes	Local symmetries in causets	С

(Infinite) sprinkles usually do not have local symmetries.

Are local symmetries relevant or even necessary to model the very early universe in causal set theory?

Advertisement: LATEX-package 'causets'

Is part of complete distributions so that it is, for example, available on Overleaf. Just load the package with \usepackage{causets}.

```
Example (Local symmetries of the wedge)
To get \Lambda \oslash \cdot = 1, write
\rhocauset{2,1,3} \oslash \pcauset{1} = \pcauset{1,2}
```

Online tool to support the use of the package

To help finding the right macro, go to my website c-minz.github.io/assets/html/ proset-editor.html

The PrOSET Editor

Welcome to the PrOSET editor to visualise and modify finite partially ordered sets (posets) represented as their Hasse diagrams. Finite posets are interval subsets of causal sets, for example. This version only supports Hasse diagrams of 2-dimensional posets, represented by a permutation of consecutive integers starting from 1 (given as a comma separated list).

nclusion