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Electronic tools for causal sets and research in their symmetries

1 LATEX-package ’causets’ to draw Hasse diagrams (of causal sets
and partially ordered sets in general),

2 Online tool to help finding the LATEX-macros,
3 Preprint “Local symmetries in partially ordered sets”.

[CTAN 2020]
ctan.org/pkg/causets,
[M 2024] c-minz.github.io,
[M 2024] arXiv:2406.14533.
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1 Symmetries of spacetime manifolds vs. sprinkled causal sets

2 Local symmetries of (finite) partially ordered sets

3 Causal sets of regular geometric polytopes

4 Local symmetries in causets
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Sprinkling process on spacetime manifolds and (pre-)compact subsets

A sprinkle on a spacetime M

Probability space
(
Q, B(Q), µ

)
Q :=

{
S ⊂ M

∣∣∣∣ ∀U ⊆
pre-compact

M : |S ∩ U | < ∞
}

a probability measure µ over the Borel
σ-algebra B(Q)

A sprinkle on a (pre-)compact subset U ⊂ M

Probability space
(
QU , B(QU ), µU

)
QU,n :=

{
S ⊂ U

∣∣ |S| = n
}

µU (Bn) = e−ρν(U) ρn

n! νn
(
Σ−1

U,n(Bn)
)

Math. review: [Fewster–Hawkins–M–Rejzner 2021].

M = M2
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Invariance of the sprinkling process under spacetime symmetries

Invariance under spacetime symmetries
Let Λ be a symmetry transformation of the
spacetime. For example, Λ ∈ P↑

+, a proper
orthochronous Poincaré transformation in
Minkowski spacetime.
The volume measure is invariant:

ν ◦ Λ = ν µΛU = µU .

A sprinkle in Minkowski spacetime does not pick
out a preferred frame of reference
[Bombelli–Henson–Sorkin 2006].
Remark: A preferred past structure assigns a
unique direction to each element in a causal set,
but this is a random distribution on the
hyperboloid, for all elements of a sprinkle.
[Dable-Heath–Fewster–Rejzner–Woods 2020, FHMR 2021]

M = M2

ΛU
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M = M2

Λ′U
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Definition of local symmetries in posets

Singleton-symmetric elements
Let P be a poset. Two elements a, b ∈ P are
singleton-symmetric if

L±(a) = L±(b)
(
⇔ J±

∗ (a) = J±
∗ (b)

)
.

⇒ “Singleton-symmetric” is an equivalence
relation.

⇒ Taking the quotient of a poset P by this
symmetry yields a retract P ⊘

Example (Antichains)
Elements of antichains are singleton-symmetric

= ( ) ⊘ = ( ) ⊘ = ( ) ⊘ = . . . .

Example (Parallel-series compositions)

⊘

=
((

⊔
)

∨
)

⊘

= .
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Definition of local symmetries in posets

Generalisation to Q-symmetric elements
Let Q be a finite poset, and r ∈ N, r ≥ 2. For an
automorphism σ ∈ Aut(P ), let Σ(σ) ⊆ P denote
the subset of all elements that are not fixed by σ.
The automor. is a (Q, r)-generator if there exists
a sequence of r subsets Si ⊂ Σ(σ) with Si

∼= Q,
and they are the smallest, maximally ordered
subsets of Σ(σ) with σ(Si) = Si+1 mod r

(0 ≤ i < r) that cover Σ(σ).
For a, b ∈ P , a ∼0 b if a = b;
a ∼1 b if ∃A, B ⊂ P with (Q, r)-generator σ such
that a ∈ A and b = σq(a) ∈ B = σq(A) for some
1 ≤ q < r;
a ∼n b if a ̸∼j b for any j < n but ∃c ∈ P and
j < n such that a ∼j c and c ∼j−n b;
a is (Q, r)-symmetric to b if there exists an
n ∈ N0 such that a ∼n b.

Quotient by all (Q, r)-symmetries gives a retract
P ⊘r Q (and we drop the index if r = 2).

Example (Parallel-series compositions — cont.)

⊘ ⊘ ⊘

=
((

⊔
)

∨
)

⊘ ⊘ ⊘

=
((

⊔
)

∨
)

⊘ ⊘

= ⊘ ⊘ = .
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⊘ ⊘ ⊘
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⊔
)

∨
)
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⊔
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∨
)

⊘ ⊘
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Classification of posets with local symmetries

Definition (Locally symmetric posets)
For a finite poset Q and r ∈ N, a poset P is
locally (Q, r)-symmetric and (Q, r)-retractable to
the poset P̃ if P̃ = P ⊘r Q ̸= P . The poset P is
locally symmetric if there exists some finite poset
Q and r ≥ 2 such that P is locally
(Q, r)-symmetric, P is retractable to the poset P̃
(the retract of P ) if there exist some sequence of
(Qi, ri)-symmetries such that
P̂ = P ⊘r1 Q1 ⊘r2 Q2 ⊘r3 . . . ̸= P , and P is
locally unsymmetric if it is not locally symmetric.

All posets that are (Q, r)-retractable to some
poset R form a class of symmetry extensions

[R ⊙r Q] := {P ∈ P | P ⊘r Q = R ̸= P} .

Two elements are prime (Q, r)-symmetric if they
are not (Q′, r′)-symmetric by another smaller
Q′ ⊂ Q or smaller r′ < r. For example:

⊘ · · · = ⊘ = ⊘ =

⊘′ = .

Example (Posets of bipartite graphs)

[ ⊙ ]′ =
{

, , , , ,

, , , , . . .
}

.
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Posets of regular polygons embedded in (1+2)-dimensional Minkowski spacetime

Posets of polygons
Regular polygons have dihedral symmetry.

Example (Causal sets of polygons)
The (regular) polygons also have a geometrical
representation as causal sets embedded in
(1 + 2)-dimensional Minkowski spacetime.
Imagine a regular polygon embedded in the
Cauchy slice and light pulses being emitted from
all corners at t = 0. The light pulses propagate
and meet pairwise at the central points of the
polygon edges, later all pulses meet at the centre
of the polygon (2-face).
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Posets of simplices that embed (1 + d)-dimensional Minkowski spacetime
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Theorem (Simplices)
The d-simplex is (d − 2)-simplex-retractable to the
(d + 2)-chain.

Theorem (Preservation of layers)
For any (Q, r)-symmetric poset P , the symmetry
quotient P/(Q, r) preserves layers.
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Local symmetries vs. Kleitman–Rothschild orders

In the large n behaviour, posets with a small number of layers dominate [Kleitman–Rothschild 1975].

Example (Some Kleitman–Rothschild orders have local symmetries)
Fig. 1 from [Carlip–Carlip–Surya 2023] is singleton-symmetric, retracting to the (0, 1, 2)-faces subset of the
3-simplex, which in turn retracts to the 3-chain,

⊘ ⊘ = ⊘ = .
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Local symmetries vs. sprinkled causal sets

“Very unsymmetric” posets
For any k ∈ N0, a poset P is k-stable locally
unsymmetric if, for every subset S ⊆ P that has
cardinality 0 ≤ |S| ≤ k, the poset P ∖ S is locally
unsymmetric. A poset P is total locally
unsymmetric if P ∖ S is k-stable locally
unsymmetric for every k < |P |.

Example
Any chain posets (total order) is total locally
unsymmetric.

Posets with more layers are more likely to be
(total) locally unsymmetric.

Numbers by cardinality (row) and layer (column).
1 2 3 4 5 6 7 pn

1 1 1
2 1 1 2
3 1 3 1 5
4 1 8 6 1 16
5 1 20 31 10 1 63
6 1 55 162 84 15 1 318
7 1 163 940 734 185 21 1 2045

pn Number of all posets with cardinality n.
un Number of all locally unsymmetric posets.
sn Number of all 1-stable locally unsymmetric

posets.
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“Very unsymmetric” posets
For any k ∈ N0, a poset P is k-stable locally
unsymmetric if, for every subset S ⊆ P that has
cardinality 0 ≤ |S| ≤ k, the poset P ∖ S is locally
unsymmetric. A poset P is total locally
unsymmetric if P ∖ S is k-stable locally
unsymmetric for every k < |P |.

Example
Any chain posets (total order) is total locally
unsymmetric.

Posets with more layers are more likely to be
(total) locally unsymmetric.

Numbers by cardinality (row) and layer (column).
1 2 3 4 5 6 7 sn

1 1 1
2 0 1 1
3 0 0 1 1
4 0 0 1 1 2
5 0 0 0 3 1 4
6 0 0 2 8 6 1 17
7 0 0 4 37 36 10 1 88

pn Number of all posets with cardinality n.
un Number of all locally unsymmetric posets.
sn Number of all 1-stable locally unsymmetric

posets.
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Local symmetries vs. sprinkled causal sets

Theorem (Sprinkles have no symmetries)
A sprinkle in d-dimensional Minkowski spacetime
is total locally unsymmetric with probability 1.

Proof: Let S be a random sprinkle in Minkowski
spacetime M1+d, take two separated elements.
The probability for It to contain n elements is

Pr
(

|S ∩ It| = 0
)

= ρnν(It)n

n! e−ρν(It) .

For S to be total locally unsymmetric the region
It could at most contain a finite number n of
elements. We can choose t arbitrarily large (even
t → ∞) so that this probability vanishes no
matter how small ε > 0 is and how large (but
finite) n is. □

M = M2
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Summary and advertisement

Summary: local symmetries
(Infinite) sprinkles usually do not have local
symmetries.
Are local symmetries relevant or even necessary to
model the very early universe in causal set theory?

Advertisement: LATEX-package ’causets’
Is part of complete distributions so that it is, for
example, available on Overleaf. Just load the
package with \usepackage{causets}.

Example (Local symmetries of the wedge)
To get ⊘ = , write
$\pcauset{2,1,3} \oslash \pcauset{1} =
\pcauset{1,2}$

Online tool to support the use of the package
To help finding the right macro, go to my website
c-minz.github.io/assets/html/
proset-editor.html
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