A geodesically complete ring wormhole XVII Marcel Grossmann Meeting

・ロト ・ 日 ・ ・ ヨ ・ ・

크

Juan Carlos Del Águila Rodríguez

Universidad Autónoma Metropolitana, México

July 11, 2024

OUTLINE

1 Introduction

- Wormholes and Their Issues
- The Problem With Singularities

2 The Electromagnetic Dipole Wormhole

- Properties
- Null Energy Condition
- Ring Singularity
- Geodesics Approaching the Singularity

3 Conclusions

э

A (1) > A (2) > A (2) >

Wormholes and Their Issues

Wormholes. Hypothetical space-times with a non-trivial tropology that would allow communication between distant regions of the same universe, or even between differente universes.

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

¹M. S. Morris and K. S. Thorne, American Journal of Physics 56, 395 (1988).

²K. A. Bronnikov and J. C. Fabris, Classical and Quantum Gravity 14, 831 (1997). 🗸 🗇 🕨 👍 🛓 🌾 🚊 🔷 🔍 💎

Wormholes and Their Issues

Wormholes. Hypothetical space-times with a non-trivial tropology that would allow communication between distant regions of the same universe, or even between differente universes.

One of the main issues regarding their realistic existence is:

 Regular, spherically symmetric wormholes violate the null energy condition in standard General Relativity¹.

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

¹M. S. Morris and K. S. Thorne, American Journal of Physics 56, 395 (1988).

²K. A. Bronnikov and J. C. Fabris, Classical and Quantum Gravity 14, 831 (1997). 🗤 🗇 🕨 🛪 🗄 🕨 👘 🖉 🔷 🔿 🔍 🤭

Wormholes and Their Issues

Wormholes. Hypothetical space-times with a non-trivial tropology that would allow communication between distant regions of the same universe, or even between differente universes.

One of the main issues regarding their realistic existence is:

 Regular, spherically symmetric wormholes violate the null energy condition in standard General Relativity¹.

Ring wormholes² are capable of avoiding the previous problem, but introduce another mayor obstacle: a **curvature singularity** bounding their throats.

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

¹M. S. Morris and K. S. Thorne, American Journal of Physics 56, 395 (1988).

²K. A. Bronnikov and J. C. Fabris, Classical and Quantum Gravity 14, 831 (1997). → < □ → < Ξ → < Ξ → □ Ξ

THE PROBLEM WITH SINGULARITIES

Curvature singularities:

- Divergent or undefined curvature invariants.
- Can cause geodesic incompleteness.

Incomplete curves in spacetime

- Singularities do not belong to the spacetime manifold.
- Curves are helpful tools to identify missing regions (holes).
- A spacetime with incomplete geodesics is singular.

A geodesic $\gamma(\lambda)$ is complete if it is defined for all values $\lambda \in \mathbb{R}$ of its affine parameter λ .

A spacetime is geodesically incomplete if it contains at least an incomplete geodesic.

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

The Electromagnetic Dipole Wormhole

The Lagrangian that generates this wormhole solution is

$$\mathscr{L} = R - 2\varepsilon \nabla_{\mu} \Phi \nabla^{\mu} \Phi - e^{-2\alpha \Phi} F_{\mu\nu} F^{\mu\nu}, \qquad (1)$$

Field Equations

$$\begin{split} R_{\mu\nu} = & 2\varepsilon \nabla_{\mu} \Phi \nabla_{\nu} \Phi + 2 \mathsf{e}^{-2\alpha\Phi} \left(\mathcal{F}_{\mu\rho} \mathcal{F}_{\nu}^{\ \rho} - \frac{1}{4} \mathsf{g}_{\mu\nu} \mathcal{F}_{\delta\gamma} \mathcal{F}^{\delta\gamma} \right), \\ \nabla_{\mu} (\mathsf{e}^{-2\alpha\Phi} \mathcal{F}^{\mu\nu}) = 0, \quad \nabla^{\mu} \nabla_{\mu} \Phi = \frac{\alpha}{2} \mathsf{e}^{-2\alpha\Phi} \mathcal{F}_{\delta\gamma} \mathcal{F}^{\delta\gamma}, \end{split}$$

where:

- R is the Ricci scalar,
- $F_{\mu\nu}$ is the electromagnetic field tensor,
- Φ is the scalar field of a zero spin particle,
- $\varepsilon = +1$ for a dilatonic field and $\varepsilon = -1$ for a phantom field,
- α is a coupling constant. Interesting cases are $\alpha^2 = 1$ (a low-energy string theory), and $\alpha^2 = 3$ (a 5D Kaluza-Klein theory).

< □ > < □ > < □ > < □ > < □ >

The Electromagnetic Dipole Wormhole

Its line element in oblate spheroidal coordinates $\{t, x, y, \varphi\}$ is ³

$$ds^{2} = -(dt + \Omega d\varphi)^{2} + e^{K} \Delta \left(\frac{L^{2} dx^{2}}{\Delta_{1}} + \frac{dy^{2}}{1 - y^{2}}\right) + \Delta_{1}(1 - y^{2}) d\varphi^{2}, \qquad (2)$$

with $\Delta = L^2(x^2 + y^2)$, $\Delta_1 = L^2(x^2 + 1)$, and $\Omega = aLx(1 - y^2)/\Delta$. Also,

$$\mathcal{K} = \frac{k}{L^4} \frac{\left[1 - y^2\right] \left[8x^2 y^2 (x^2 + 1) - (1 - y^2)(x^2 + y^2)^2\right]}{(x^2 + y^2)^4}, \quad \text{where:} \ k = \frac{a^2}{8} \left(1 - \frac{4\varepsilon}{\alpha^2}\right).$$

Figure: Profiles for different fixed values of x (left) and y (right). Here L = 1.

³G. Miranda, J. C. Del Aguila, and T. Matos, Phys. Rev. D 99, 124045 (2019)□ → < □ → < ≡ → < ≡ →

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

The Electromagnetic Dipole Wormhole

	k		
α^2	Dilatonic Field ($\varepsilon = 1$)	Ghost Field ($\varepsilon = -1$)	
1	$-3a^{2}/8$	$5a^{2}/8$	
3	$-a^2/24$	$7a^2/24$	

Figure: Embedding profiles of the electromagnetic dipole_wormhole.

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

≣ ► = 7 / 15

Principal Features:

- It is axially symmetric and stationary $(\partial/\partial t \ y \ \partial/\partial \varphi$ are Killing vectors).
- Angular momentum: J = a.
- L > 0 is related to the size of the throat.
- Is asymptotically flat (if $a = 0 \rightarrow$ flat space-time).
- Its throat is located at x = 0.
- Curvature singularity σ of radius L at x = y = 0 bounding the throat.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

Principal Features:

- It is axially symmetric and stationary $(\partial/\partial t \ y \ \partial/\partial \varphi$ are Killing vectors).
- Angular momentum: J = a.
- L > 0 is related to the size of the throat.
- Is asymptotically flat (if $a = 0 \rightarrow$ flat space-time).
- Its throat is located at x = 0.
- Curvature singularity σ of radius L at x = y = 0 bounding the throat.

Scalar field and four-potential

$$\Phi = \underbrace{\frac{ay}{\alpha L^2(x^2 + y^2)}}_{\text{Dipole-like scalar field}}, \quad A = -\frac{e^{\alpha \Phi}}{2} \left[(1 - e^{-\alpha \Phi}) dt + \Omega d\varphi \right].$$
(3)

In an orthonormal frame $\{\hat{t}, \hat{x}, \hat{y}, \hat{\varphi}\}$:

$$F_{\hat{\mu}\hat{\nu}} = \underbrace{\frac{a}{L^3 x^3} \begin{bmatrix} 0 & y & -\sqrt{1-y^2}/2 & 0\\ -y & 0 & 0 & -\sqrt{1-y^2}/2\\ \sqrt{1-y^2}/2 & 0 & 0 & -y\\ 0 & \sqrt{1-y^2}/2 & y & 0 \end{bmatrix}}_{0} + \mathcal{O}\left(\frac{1}{x^4}\right).$$

Electromagnetic dipole

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

NULL ENERGY CONDITION (NEC)

Orthonormal vector basis
$$\{V_l^{\mu}\}$$
: $V_0 = \frac{\partial}{\partial t}$, $V_1 = \frac{e^{-K/2}}{L} \sqrt{\frac{\Delta_1}{\Delta}} \frac{\partial}{\partial x}$,
 $(I = 0, 1, 2, 3)$, $V_2 = e^{-K/2} \sqrt{\frac{1 - y^2}{\Delta}} \frac{\partial}{\partial y}$, $V_3 = \frac{1}{\sqrt{\Delta_1(1 - y^2)}} \left(\frac{\partial}{\partial \varphi} - \Omega \frac{\partial}{\partial t}\right)$.

The stress-energy measured by an arbitrary null observer with tangent

$$k^{\mu} = \sum_{I} A_{I} V_{I}^{\mu}$$
, where $-A_{0}^{2} + A_{1}^{2} + A_{2}^{2} + A_{3}^{2} = 0$,

is given by

wi

$$T_{\mu\nu}k^{\mu}k^{\nu} = \frac{a^{2}e^{-\kappa}}{2L^{6}(x^{2}+y^{2})^{4}} \left[A_{0}^{2}+A_{3}^{2}\right] \left[y^{2}(1-y^{2})+x^{2}(1+3y^{2})\right] \\ + \frac{a^{2}e^{-\kappa}}{2L^{6}(x^{2}+y^{2})^{5}} \left[a^{2}(A_{1}F_{1}+A_{2}F_{2})^{2}-8k(A_{1}F_{2}-A_{2}F_{1})^{2}\right], \quad (4)$$

th $F_{1} = (x^{2}-y^{2})\sqrt{1-y^{2}}$ and $F_{2} = 2xy\sqrt{x^{2}+1}.$

NULL ENERGY CONDITION (NEC)

Orthonormal vector basis
$$\{V_I^{\mu}\}$$
: $V_0 = \frac{\partial}{\partial t}$, $V_1 = \frac{e^{-K/2}}{L} \sqrt{\frac{\Delta_1}{\Delta}} \frac{\partial}{\partial x}$,
 $(I = 0, 1, 2, 3)$, $V_2 = e^{-K/2} \sqrt{\frac{1 - y^2}{\Delta}} \frac{\partial}{\partial y}$, $V_3 = \frac{1}{\sqrt{\Delta_1(1 - y^2)}} \left(\frac{\partial}{\partial \varphi} - \Omega \frac{\partial}{\partial t}\right)$.

The stress-energy measured by an arbitrary null observer with tangent

$$k^{\mu} = \sum_{I} A_{I} V_{I}^{\mu}, \text{ where } -A_{0}^{2} + A_{1}^{2} + A_{2}^{2} + A_{3}^{2} = 0,$$

is given by

$$T_{\mu\nu}k^{\mu}k^{\nu} = \frac{a^{2}e^{-\kappa}}{2L^{6}(x^{2}+y^{2})^{4}} \left[A_{0}^{2}+A_{3}^{2}\right] \left[y^{2}(1-y^{2})+x^{2}(1+3y^{2})\right] +\frac{a^{2}e^{-\kappa}}{2L^{6}(x^{2}+y^{2})^{5}} \left[a^{2}(A_{1}F_{1}+A_{2}F_{2})^{2}-8k(A_{1}F_{2}-A_{2}F_{1})^{2}\right], \quad (4)$$

with $F_1 = (x^2 - y^2)\sqrt{1 - y^2}$ and $F_2 = 2xy\sqrt{x^2 + 1}$.

If k > 0, the NEC is not guaranteed to be satisfied.

If $k \leq 0$, then $T_{\mu\nu}k^{\mu}k^{\nu} > 0$ (the NEC holds).

Juan Carlos Del Águila Rodríguez

ANALYZING THE CURVATURE SINGULARITY

General form of the curvature scalars in this wormhole

$$R_X = \frac{e^{-\delta K} F(x, y)}{(x^2 + y^2)^{\beta}},\tag{5}$$

where:

•
$$\beta, \delta \in \mathbb{Z}^+$$
. Recall that,

$$K = \frac{k}{L^4} \frac{\left[1 - y^2\right] \left[8x^2y^2(x^2 + 1) - (1 - y^2)(x^2 + y^2)^2\right]}{(x^2 + y^2)^4}$$

• F(x, y) is a polynomial with degree less than that of $(x^2 + y^2)^{\beta}$.

Directional singularity. The limit $x, y \rightarrow 0$ is not well defined (it depends on the direction of approach).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

ANALYZING THE CURVATURE SINGULARITY

General form of the curvature scalars in this wormhole

$$R_X = \frac{e^{-\delta K} F(x, y)}{(x^2 + y^2)^{\beta}},\tag{5}$$

where:

•
$$\beta, \delta \in \mathbb{Z}^+$$
. Recall that,

$$K = \frac{k}{L^4} \frac{\left[1 - y^2\right] \left[8x^2y^2(x^2 + 1) - (1 - y^2)(x^2 + y^2)^2\right]}{(x^2 + y^2)^4}$$

• F(x, y) is a polynomial with degree less than that of $(x^2 + y^2)^{\beta}$.

Directional singularity. The limit $x, y \rightarrow 0$ is not well defined (it depends on the direction of approach).

What happens to geodesics in the neighborhood of the ring singularity? Do they become incomplete?

(日)

Geodesics Approaching the Singularity

Constants of motion:

• Conjugate momenta
$$p_0 = -\mathcal{E}$$
 y $p_3 = \mathcal{L}$.

•
$$\kappa = g^{\mu\nu} p_{\mu} p_{\nu} = \begin{cases} 0 & \text{for null geodesics,} \\ -1 & \text{for time-like geodesics.} \end{cases}$$

• This wormhole does not admit a non-trivial quadratic first integral.

Consider the Hamiltonian of freely-falling particles: $2\mathcal{H} = \kappa$.

$$e^{\mathcal{K}}\Delta\left(\frac{L^2\dot{x}^2}{\Delta_1} + \frac{\dot{y}^2}{1-y^2}\right) = \kappa + \mathcal{E}^2 - \frac{(\Omega\mathcal{E} + \mathcal{L})^2}{\Delta_1(1-y^2)}.$$
(6)

Geodesics Approaching the Singularity

Constants of motion:

• Conjugate momenta
$$p_0 = -\mathcal{E} \text{ y } p_3 = \mathcal{L}.$$

•
$$\kappa = g^{\mu\nu} p_{\mu} p_{\nu} = \begin{cases} 0 & \text{for null geodesics,} \\ -1 & \text{for time-like geodesics.} \end{cases}$$

• This wormhole does not admit a non-trivial quadratic first integral.

Consider the Hamiltonian of freely-falling particles: $2\mathcal{H} = \kappa$.

$$e^{K}\Delta\left(\frac{L^{2}\dot{x}^{2}}{\Delta_{1}}+\frac{\dot{y}^{2}}{1-y^{2}}\right)=\kappa+\mathcal{E}^{2}-\frac{(\Omega\mathcal{E}+\mathcal{L})^{2}}{\Delta_{1}(1-y^{2})}.$$
(6)

■ Incomplete geodesics within the throat $(x = \dot{x} = \ddot{x} = 0)$ can be found for k > 0 and $|y| \ll 1$ ($\mathcal{L} = 0$):

$$\lambda = \pm \int y e^{-k/2L^4 y^4} dy$$
, finite λ when $y \to 0$.

• On the other hand, if k < 0: $\dot{y}, \ddot{y} \to 0$ and infinite λ when $y \to 0$.

The integrability of general geodesics is not guaranteed.

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

Null Geodesics of the Dilatonic WH⁵ (
$$a = 0.1$$
, $L = 10$, $k = -a^2/24$, $\mathcal{E} = 10$)

Numerical solutions that are directed toward the singularity.

12 / 15

⁴J. Wheeler, Les Houches Lectures (1964).

⁵J. C. Del Aguila, and T. Matos, Phys. Rev. D 107, 064047 (2023)

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

Numerical solutions that are directed toward the singularity.

Infinite affine parameter needed to reach the singularity.

Vanishing curvature when approaching the singularity from regions with K > 0 (blue region).

Complete geodesics despite unbounded curvature.

Wheeler's "bag of gold" singularity.

Infinite volume bounded by a finite superficial area⁴.

12 / 15

⁴J. Wheeler, Les Houches Lectures (1964).

⁵J. C. Del Aguila, and T. Matos, Phys. Rev. D 107, 064047 (2023)

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

CONCLUSIONS

The geodesic completeness of a wormhole with a ring singularity σ was studied. It is supported by an electromagnetic field and a (phantom or dilatonic) scalar field.

	Geodesics that encounter σ			
k	Conditions	Curvature	Regularity	NEC
	Constrained to $x = 0$		Singular (singularity	Can be
Positive	(finite λ required,	Unbounded	visible to observers	violated
	incomplete)		in the throat)	
Negative	Infinite λ required	Vanishing	Complete causal	$T_{\mu u}k^{\mu}k^{ u}\geq 0$
	to reach σ		geodesics	

Wormholes supported by a phantom field (k > 0) are physically problematic:

- Violation of the NEC.
- Geodesic incompleteness.

For wormholes with a dilatonic scalar field and a weak coupling ($\alpha^2 \le 4 \rightarrow k < 0$):

- The ring singularity does not necessarily imply geodesic incompleteness.
- The null energy condition holds.

13 / 15

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

OTHER COMMENTS

Interpretation of the singularity through a five-dimensional analysis using Kaluza-Klein theory (not presented here):

- Geodesiscs require an infinite parameter to reach the singularity due to the radius of the fifth dimension becoming infinite near the singular region.
- Endless paths lead to the singularity.

OTHER COMMENTS

Interpretation of the singularity through a five-dimensional analysis using Kaluza-Klein theory (not presented here):

- Geodesiscs require an infinite parameter to reach the singularity due to the radius of the fifth dimension becoming infinite near the singular region.
- Endless paths lead to the singularity.

The phantom version of this wormhole is not a physically viable spacetime, but its dilatonic counterpart cannot be discarded yet.

Is the dilatonic wormhole a physically realistic model?

- What is the effect of the singularity on observers with limited acceleration?
- Incompleteness of accelerated time-like curves is still a possibility.

Thank You!

⁶Contact information: jcdelaguila@xanum.uam.mx

Juan Carlos Del Águila Rodríguez

XVII Marcel Grossmann Meeting

15 / 15

E

< □ > < □ > < □ > < □ > < □ >