Seventeenth Marcel Grossmann Meeting

Contribution ID: 22

Type: Invited talk in a parallel session

Relativistic viscous accretion flow model for black hole sources with XMM-Newton observations

Thursday, 11 July 2024 17:30 (30 minutes)

We develop a model formalism to study the structure of a relativistic, viscous, optically thin, advective accretion flow around a rotating black hole in presence of radiative coolings. We use this model to examine the physical parameters of four black hole Ultra-luminous X-ray sources (BH-ULXs), namely mass ($M_{\rm BH}$), spin ($a_{\rm k}$) and accretion rate (\dot{m}), respectively. While doing this, we adopt a recently developed effective potential to mimic the spacetime geometry around the rotating black holes. We solve the governing equations to obtain the shock induced global accretion solutions in terms of \dot{m} and viscosity parameter (α). Using shock properties, we compute the Quasi-periodic Oscillation (QPO) frequency ($\nu_{\rm QPO}$) of the post-shock matter, when the shock front exhibits Quasi-periodic variations. We also calculate the bolometric luminosity ($L_{\rm bol}$) of the entire disc for these shock solutions. Utilizing $\nu_{\rm QPO}$ and $L_{\rm bol}$, we constrain BH-ULXs mass by varying their spin ($a_{\rm k}$) and accretion rate (\dot{m}). We find that NGC6946 X-1 and NGC5408 X-1 seem to accrete at sub-Eddington accretion rate provided their central sources are rapidly rotating, whereas IC342 X-1 and NGC1313 X-1 can accrete in sub/super-Eddington limit irrespective to their spin values.

Primary author: DAS, Santabrata (Indian Institute of Technology Guwahati)

Co-author: Dr NANDI, Anuj (URSC, ISRO)

Presenter: DAS, Santabrata (Indian Institute of Technology Guwahati)

Session Classification: Spectral and temporal properties of accretion flows and jets around compact objects and the theoretical models

Track Classification: Accretion (AC): Spectral and temporal properties of accretion flows and jets around compact objects and the theoretical models