Seventeenth Marcel Grossmann Meeting

Contribution ID: 244

Type: Talk in a parallel session

Torsion electrodynamics and the axial vector spintorsion coupling effects in the framework of the Poincaré gauge theory of gravity

Monday 8 July 2024 17:50 (15 minutes)

Based on the Poincare gauge theory of gravity with the most general Lagrangian quadratic in curvature and torsion, we investigate the axial vector torsion-spin coupling. The dynamical equations for the so-called "electric" \mathcal{E}_a and "magnetic" \mathcal{B}^a components of the torsion variable are obtained in the general form, where the helicity density and spin density of the electromagnetic with scalar and vector potentials ϕ , \vec{A} are the sources of these fields

\begin{align}

 $\label{eq:label} e_{\mathbbE} - \mathbb{E} - \mathbb{$

-\,{\frac{\chi}{\mu_0}}\,\vec{A}\cdot\vec{B},\\

+ \lambda\vec{\nabla}(\partial\alpha) &= -\,\chi\varepsilon_0\left(\phi\vec{B}

+ $\ensuremath{\mathsf{Vec}}{E}\$

\end{align} The modified Maxwell's equations for the electromagnetic field are derived, where the sources are dependent on the torsion field potentials $\varphi, \vec{\alpha}$

\begin{align}

- $\c \in A\c B,\ B,\$

 $\eqref{abla} \eqref{b} - {\ref{b} - {\ref{abla}} \eqref{b} = \eqref{b} \eq$

 $\label{eq:alpha} {\end{tabular} + \end{tabular} + \end{tabular} + \end{tabular}$

Author: Dr TRUKHANOVA, Mariia (Lomonosov Moscow State University, Faculty of Physics, Department of theoretical physics)

Co-authors: Dr ANDREEV, Pavel (Lomonosov Moscow State University, Faculty of Physics, Department of general physics); Dr OBUKHOV, Yuri (Theoretical Physics Laboratory, Nuclear Safety Institute, Russian Academy of Sciences)

Presenter: Dr TRUKHANOVA, Mariia (Lomonosov Moscow State University, Faculty of Physics, Department of theoretical physics)

Session Classification: Extended theories of electromagnetism and their impact on laboratory experiments and astrophysical observations

Track Classification: Theory and Experiments in Fundamental Physics: Extended theories of electromagnetism and their impact on laboratory experiments and astrophysical observations