Testing a Two-Zone Leptohadronic model with EHSP BL Lacs and tracklike HE-neutrinos

EDILBERTO AGUILAR RUIZ INSTITUTO DE RADIOSASTRONOMÍA Y ASTROFÍSICA, UNAM. Antonio Galván-Gámez, Nissim Fraija Instituto de Astronomía, UNAM

OVERVIEW

- CONTEXT AND BASIC CONCEPTS
- MOTIVATION FOR THE STUDY
- THE MODEL
- RESULTS
- SUMMARY AND CONCLUSIONS

What is a BL Lac?

Types of BL Lac

IceCube: The biggest HE-v detector CECUBE IceTop 50 m Amundsen–Scott South Pole Station, Antarctica 86 strings of DOMs, IceCube Laboratory A National Science Foundationset 125 meters apart managed research facility Data is collected here and sent by satellite to the data warehouse at UW-Madison 1450 m 60 DOMs on each string DOMs are 17 IceCube meters detecto apart **Digital Optical** Module (DOM) 2450 m 5,160 DOMs deployed in the ice Antarctic bedrock Credits https://icecube.wisc.edu/

Detection of neutrinos by IceCube

Angular resolution ~1°

"track event" (from ν_{μ} scattering)

Angular resolution ~15°

"cascade event" (from all flavours)

IceCube: Event detection

Blazars as cosmic accelerators

TXS 0506+056: The first identification of an extragalactic cosmic accelerator

 $E_{\nu} \sim 290 \text{ TeV}$

NEUTRINO ASTROPHYSICS

Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A

The IceCube Collaboration, *Fermi*-LAT, MAGIC, *AGILE*, ASAS-SN, HAWC, H.E.S.S., *INTEGRAL*, Kanata, Kiso, Kapteyn, Liverpool Telescope, Subaru, *Swift/NuSTAR*, VERITAS, and VLA/17B-403 teams*†

RESEARCH ARTICLE

NEUTRINO ASTROPHYSICS

~ 6 months in 2014-2015

Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert

TXS 0506+056 2009-06 2010-11 2012-03 2013-07 2014-12 2016-04 2017-09 IC-170922A -²S⁻¹] z=0.3365 Neutrino flare 2014/15 Gamma-ray flare 2017/18 Elux [10-7 phcm] Flux [10-7 phcm] Flux Fermi-LAT > 300 MeV Fermi-LAT Collaboration 2019 (see also Padovani et al. 2018) 0.0 IC79 IC86a IC86b IC86c Neutrino 13 ± 5 · · · · IceCube-170922A Gaussian Analysis log₁₀ p Box-shaped Analysis excess IceCube Colloboration 2018b 2010 2011 2012 2013 2014 2015 2016 2017 2009

IceCube Collaboration*†

HE-v production in astrophysical environments Short-li

Short-lived particles $\tau_{\pi^{\pm}} \approx 2.6 \times 10^{-8} \text{sec}$ $\tau_{\mu} \approx 2.197 \times 10^{-6} \text{sec}$

Ve

 $\pi^{\pm} x_{\nu} = \frac{E_{\nu}}{E_p} = \frac{1}{2} \langle x_{p \to \pi} \rangle \simeq \frac{1}{20},$

 $x_{\gamma} = \frac{E_{\gamma}}{E_p} = \frac{1}{2} \langle x_{p \to \pi} \rangle \simeq \frac{1}{10}.$

νμ

Via photomeson production:

$$p + \gamma_{\text{Low}} \rightarrow N_{+}\pi^{+} + N_{+}\pi^{-} + N_{+}\pi^{0} + \cdots$$
$$\succ \epsilon_{\text{p,th}} > 70 \text{ PeV} \left(\frac{\epsilon_{\gamma}}{1 \text{ eV}}\right)^{-1}$$

 $\pi^0 \to \gamma\gamma$

Multimessenger astronomy

A two-zone leptohadronic model for blazar (AR2022)

$$E_{\gamma}^{\text{ob}} \gtrsim 75 \text{ GeV} \frac{\Gamma_{\text{rel}} \mathcal{D}_i}{1+z} \left(\frac{\varepsilon_{\text{pl}}}{511 \text{ keV}}\right)^{-1}.$$

$$E_{\text{syn,BH}}^{\text{ob}} \gtrsim 8 \times 10^{-5} \text{ eV} \Gamma_{\text{rel}}^2 \left(\frac{B'_i}{100\text{G}}\right) \left(\frac{\mathcal{D}_i}{3}\right) \left(\frac{\varepsilon_{\text{pl}}}{511 \text{ keV}}\right)^2.$$

$$E_{\text{syn,p\pi}}^{\text{ob}} \gtrsim 36 \text{ keV} \Gamma_{\text{rel}}^2 \left(\frac{B'_i}{100\text{G}}\right) \left(\frac{\mathcal{D}_i}{3}\right) \left(\frac{\varepsilon_{\text{pl}}}{511 \text{ keV}}\right)^2.$$

$$\frac{sc}{e^{\pm}(sHe)} \frac{\gamma(\pi^{0})}{\rho(\pi^{0})}$$
Energy

Neutrino requirement for the model

APPLICATION TO EHSP BL Lacs

HE-Neutrino (1)	E _ν (PeV) (2)	R.A. (deg) (3)	Dec (deg) (4)	$\begin{array}{c} A_{\mu, \rm eff} \\ (\rm m^2) \\ (5) \end{array}$	Coincident EHSP BL Lac (6)	v ^{pk} _{syn} (10 ¹⁷ Hz) (7)	z (8)	d _L (Gpc) (9)	$\frac{E_{\nu}L_{E} _{E_{\nu}^{\rm ob}}}{(10^{45}{\rm ergs^{-1}})}$ (10)	
IC190819A	0.113	$148.54^{+2.29}_{-3.30}$ $167.30^{+2.81}_{-2.72}$ $1480.18^{+2.20}_{-1.82}$	$1.45^{+0.93}_{-0.75}$	29.26	1RXS J09462.5+010459	6.16	0.577	3.476	8.52	
IC190922A	3.114		$-22.27^{+3.39}_{-3.31}$	128.86	1ES 1101-232	3.40	0.186	0.879	5.48	
IC200107A	0.330 ^a		$35.46^{+1.10}_{-1.22}$	20.85	3HSP J095507.9+355101	5 (≳20 ^b)	0.557	3.332	32.28	

RESULTS: 1RXS J094620.5+010459

RESULTS: 1ES 1101-232

Enerav (eV)

RESULTS: 3HSP J095507.9+355101

Energy (eV)

SUMMARY AND CONCLUSIONS

- We have studied the association of 3 EHSP (two during steady state and one during flaring state) coincident with track-like HE-neutrino events using a two-zone leptohadronic model.
- Our results indicates that our two zone model may explain the broadband emission of two blazar during steady state, favoring hard spectrum and magnetic field strengths in the range of $B = 10^3 10^4$ G. Meanwhile for the blazar during flaring state our model presents difficult and only selecting extreme parameter values our model can partially fit the observations.
- Our two zone model is a feasible alternative and the key to discriminate it among other models are future instruments in the MeV-band.

THANK YOU FOR YOUR ATTENTION!

	Inner Blob												
	1RX	1RXS J09462.5+010459 (Scenario A)				1ES 1101-232 (Scenario A)			3HSP J095507.9+355101 (Scenario B)				
Γ_i		1.5				1.5			1.5				
\mathcal{D}_i		2.6					2.6			2.6			
$R' [10^{14} \text{ cm}]$		3				3			3				
$\varepsilon'_{p,\min}$ [GeV]		1				1			1				
ε' _{p,max} [PeV]		10				100			10				
α _p	1.5		2		1.5		2	1.5		2			
K'_{ν} [10 ⁵ cm ⁻³ GeV ⁻¹]	2.4	2.4 2.7×10^3			0.26		1.3×10^{3}	1.8	1.8 3.5×10^3				
L_p^{P} [10 ⁴⁷ erg s ⁻¹]	0.68	0.68 5.3		0.26 2.3		3.7	26.6						
$B_i' [10^3 \text{G}]$	0.65	10.0	0.65	10.0	0.5	1	1	0.66	10	0.66	10		
$L_B [10^{46} \mathrm{erg s^{-1}}]$	0.31	7.1	0.31	7.1	0.0.17	0.69	0.69	0.31	7.1	0.31	7.1		
U_B/U_p	$4.5 imes 10^{-2}$	10.4	$5.8 imes 10^{-3}$	1.3	$6 imes 10^{-2}$	0.26	$3 imes 10^{-2}$	$8 imes 10^{-3}$	1.9	$1.1 imes 10^{-3}$	1.9		

Table 3. Parameters used to model the inner blob of EHSP BL Lac coincident with track-like neutrino events.