The Causal Set Path Integral and an Emerging Continuum

Steven Carlip U.C. Davis

MG17 Pescara, Italy (given remotely) July 2024

Can causal sets approximate the continuum?

Two questions:

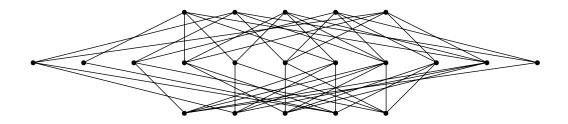
- start with spacetime manifold, approximate by causal set
- start with causal set, find suitable "smoothed" spacetime

First direction is in good shape:

- "Poisson sprinkling" of points approximates manifold (at some density ⇔ some discreteness scale)
- Can reconstruct coarse-grained topology, volume, curvature,
 d'Alembertian, Greens functions, etc.
- Open questions about defining sets that are "close" to each other
- Locality can be tricky

But...

most causal sets are nothing at all like manifolds

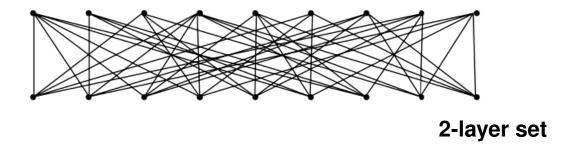


KR order

 Almost all causal sets are Kleitman-Rothschild orders (three layers/moments of time, . . .)

$$\frac{\text{\# of KR orders with } n \text{ elements}}{\text{\# of causal sets with } n \text{ elements}} = 1 + \mathcal{O}\left(\frac{1}{n}\right)$$

If these are excluded by hand...



- Almost all remaining causal sets are two-layer sets
- Then four-layer, five-layer, . . .
- Manifoldlike causal sets are of measure zero

Causal set path integral

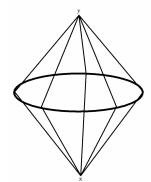
Path sum: Choose set Ω of causal sets

$$Z[\Omega] = \sum_{C \in \Omega} \exp rac{i}{\hbar} I[C],$$

How do we construct a discrete "Einstein-Hilbert action"?

Basic ingredient: causal diamond/Alexandrov interval/order interval:

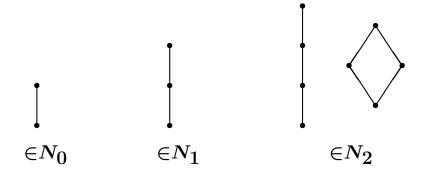
$$I(x,y) = \{z | x \prec z \prec y\}$$

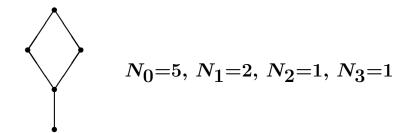


For continuum spacetimes, causal diamond volumes depend on curvature

- to make invariants from a causal set, count causal diamonds
- use to reconstruct geometry of sprinkled set

Invariant $N_J(C)$: number of (open) intervals in set C with exactly J points





Benincasa-Dowker-Glaser action:

$$rac{1}{\hbar}I_{ extit{BDG}}(C) = eta_4 \left(rac{\ell}{\ell_p}
ight)^2 (n-N_0+9N_1-16N_2+8N_3)$$

For "sprinkled" causal set, I_{BDG} approximates Einstein-Hilbert action Does the BDG action suppress non-manifoldlike causal sets?

• Result 1 (S. Carlip and S. P. Loomis): For 2-layer sets, $\mathcal{Z}\sim 2^{-cn^2}$ for a large range of coupling constants (for $\ell>1.136\ell_p$)

Sketch of proof:

- for two layers, only $N_0
 eq 0$, so $I_{ extit{BDG}} \sim (n-N_0)$
- write $N_0=pN_{ extit{max}}=rac{pn^2}{4}$

$$\Rightarrow \mathcal{Z} \sim \sum_{p} \mu_n(p) e^{-i\beta p n^2}$$

- use combinatorial arguments to bound measure $\mu_n(p)$
- approximate sum as integral, use steepest descent (carefully!)

Very strong suppression

For Planck size discreteness scale, a region $1\,\mathrm{cm}^3 imes 1\,\mathrm{ns}$ has $n \sim 10^{133}$

 \Rightarrow suppression factor of $\sim 2^{-10^{266}}$

- Result 2 (A. Mathur, A. A. Singh, and S. Surya):
 - For a very large class of layered causal sets, same suppression but with "link action": $I_{link} \sim (n-N_0)$

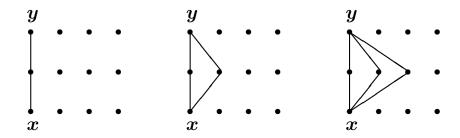
Reminder:
$$I_{ extit{BDG}} \sim n-N_0+9N_1-16N_2+8N_3$$

$$I_{ extit{link}} \sim n-N_0+9N_1-16N_2+8N_3$$

Proof: same as before, but more complicated combinatorics for $\mu_n(p)$

• Result 3 (P. Carlip, S. Carlip, and S. Surya): For KR orders, I_{link} is almost always equal to I_{BDG}

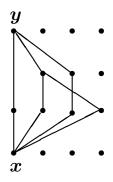
Basic argument:



- intervals with at least one element are common
- intervals with *only* one element are very rare
- \Rightarrow for large KR orders, $N_{J>0}$, subdominant in action (in fact, $N_0 \sim n^2$ while $N_{J>0} \sim n$)

Result 4 (P. Carlip, S. Carlip, and S. Surya):
 Same is true for almost all layered causal sets

Basic argument:



- with more layers, many more possible paths
- intervals with only small numbers of points are very rare

Note: this result only holds for layered causal sets For sets obtained from a sprinkled manifold, $N_J\sim n^{2-\frac{2}{d}}$ for all J

Path integral suppresses

- a very large class of "bad" causal sets
- but not manifoldlike causal sets!

Some remaining problems:

- There are probably other "bad" causal sets
 Can they be classified, and are they suppressed?
- BDG action was derived from manifold Einstein-Hilbert action
 Can it be obtained from first principles?