Properties of Cosmic-Ray Deuterons Measured by the Alpha Magnetic Spectrometer Phys. Rev. Lett. 132, 261001 Editors' suggestion,

Featured in Physics

17th Marcel Grossmann Meeting 2024

Diego Gomez Coral On behalf of the AMS-02 collaboration

and a f

Cosmic-ray Deuterons

Secondary cosmic-rays (CR) are produced by collisions of primary CR with the Interstellar medium.

Deuterons (D) and ³He are believed to be secondary CR produced mostly by fragmentation of ⁴He nuclei

Source

Deuterons are the most abundant secondary species D/⁴He and ³He/⁴He carry important information about CR propagation in the Galaxy

AMS detector

$$\boxed{M = \frac{ZR}{\beta\gamma}} \quad \text{where} \quad \gamma = \frac{1}{\sqrt{1-\beta^2}}$$

$$M = \frac{ZR}{\beta\gamma} \quad \text{where} \quad \gamma = \frac{1}{\sqrt{1-\beta^2}}$$

- Charge (Z) is obtained from
 - TOF, L1, and Inner Tracker (Z=1)

$$M = \frac{ZR}{\beta\gamma} \quad \text{where} \quad \gamma = \frac{1}{\sqrt{1-\beta^2}}$$

- Charge (Z) is obtained from
 - TOF, L1, and Inner Tracker (Z=1)
- Rigidity (R) is measured with
 - Inner Tracker

$$M = \frac{ZR}{\beta\gamma} \quad \text{where} \quad \gamma = \frac{1}{\sqrt{1-\beta^2}}$$

- Charge (Z) is obtained from
 - TOF, L1, and Inner Tracker (Z=1)
- > Rigidity (R) is measured with
 - Inner Tracker
- Velocity (β)
 - TOF or RICH

Velocity measurement

• Velocity is obtained in three complementary regions.

 β_{TOF} is calculated from time difference between upper and lower planes.

 β_{RICH} is calculated from Cherenkov angle in light cone. Two types of radiators.

Isotope separation

Isotope power separation depends on rigidity and velocity resolutions

$$\frac{\Delta M}{M} = \sqrt{\left(\frac{\Delta R}{R}\right)^2 + \left(\gamma^2 \frac{\Delta \beta}{\beta}\right)^2}$$

Tracker rigidity resolution:

 $\Delta R/R \sim 9\%$ for R<20GV

Velocity resolutions:

TOF $\Delta\beta \approx 4\%$ (Z=1) **RICH-NaF** $\Delta\beta \approx 0.35\%$ (Z=1), **RICH-Aerogel** $\Delta\beta \approx 0.12\%$ (Z=1)

Deuteron measurement

- Deuterons are obtained by an unfolding method of the two-dimensional event distributions in rigidity and β .

Background extraction

Main source of background is He fragmentation above L1

Background is estimated from data, and is $\leq 4\%$ in the entire rigidity range

Time dependence

- D were measured from May 2011 to April 2021 in 33 periods of four Bartels' rotations.
- p, D, ³He and ⁴He exhibit nearly identical variations with time.
- Time variations decrease as rigidity increase.
- Above 4.5 GV D/⁴He is time independent

Flux ratios time dependence

To study the differences in time variation for the D, ³He, and ⁴He fluxes in detail, we fit a linear relation between the relative variations of Φ_D/Φ_{4He} and Φ_{3He}/Φ_{4He} and of Φ_{4He} for the *i*th rigidity bin, (R_i, R_i + Δ R_i):

Deuteron to ⁴He ratio in Kinetic Energy compared to models

Deuteron to He ratio in Kinetic Energy compared to models

³He to ⁴He flux ratio in Kinetic Energy

Deuteron to Helium-4 ratio in Rigidity

Deuteron to proton ratio in Rigidity

Primary-like and secondary components for deuteron

• Deuteron primary-like (Φ^{P}_{D}) and secondary (Φ^{S}_{D}) components are estimated fitting D flux to the weighted sum of ⁴He and ³He fluxes above 4.5GV.

Conclusions

- The precision measurement of Deuteron cosmic-ray flux using 21 million events collected by AMS-02 from May 2011 to April 2021, as function of rigidity (1.9-21 GV) and kinetic energy per nucleon (0.6-10 GeV/n) was presented.
- It was observed D flux exhibits nearly identical time variation with p, ³He, and ⁴He. Above 4.5 GV D/⁴He is time independent.
- Results show D/⁴He ratio is described by a single power law (above 4.5GV) R^{Δ} with $\Delta_{D/4He} = -0.108 \pm 0.005$. On the other hand, ³He/⁴He ratio is described by a single power law R^{Δ} with $\Delta_{3He/4He} = -0.289 \pm 0.003$. The significance of $\Delta_{D/4He} > \Delta_{3He/4He}$ exceeds 10 σ .

Conclusions

- Deuteron to proton ratio reaches a constant value of 0.027±0.001 above 13 GV, showing a nearly identical dependence in rigidity.
- These unexpected observations show that contrary to expectations, cosmic deuterons have a sizeable primary-like component.
- With a method independent of cosmic ray propagation, we obtain the primary component of the D flux equal to $9.4 \pm 0.5\%$ of the ⁴He flux and the secondary component of the D flux equal to $58\pm5\%$ of the ³He flux.

Questions?

For more info email dgomezco@fisica.unam.mx

Deuteron and ³He Fluxes in Rigidity

Deuteron over ³He ratio in Rigidity

1/β Resolution

> Inverse velocity resolution functions at $\beta = 1$ for TOF and RICH.

