Spectra of Cosmic Rays escaping from Star Clusters

Giovanni Morlino

INAF/Osservatorio astrofisico di Arcetri Firenze - ITALY

> INAF ISTITUTO NAZIONALE DI ASTROFISICA NATIONAL INSTITUTE FOR ASTROPHYSICS

17th Marcel Grossmann Meeting PESCARA, 7-12 July 2024

* Luminosity:

Requirements

- * Luminosity:
- ***** Spectrum:

~ 10^{40} erg/s $Q_{\rm inj,Gal} \propto E^{-2.3}$

7 -2s-E^{2.7}

Requirements

- * Luminosity:
- ***** Spectrum:
- * Maximum energy: $E_{\max,p} \gtrsim 10^{15} \,\mathrm{eV}$
- * Anisotropy:

 $\sim 10^{40}$ erg/s $Q_{\rm inj,Gal} \propto E^{-2.3}$

- $\sim 10^{-3} @ 10 \,\mathrm{TeV}$
- ***** Composition:

few anomalies w.r.t. Solar

The SNR paradigm for the origin of CRs

Why SNR are so popular?

- Enough power to supply CR energy density (~10% of the explosion energy) *
- Spatial distribution of SNRs compatible with the CR distribution *
- Presence of non-thermal emission in SNRs *
- A solid theory (DSA) applicable to SNR shocks *

The SNR paradigm for the origin of CRs

Why SNR are so popular?

- Enough power to supply CR energy density (~10% of the explosion energy) *
- Spatial distribution of SNRs compatible with the CR distribution *
- Presence of non-thermal emission in SNRs *
- A solid theory (DSA) applicable to SNR shocks *

Unsolved issues:

- No evidence of acceleration beyond ~100 TeV even in very young SNRs +
- Predicted gamma-ray spectrum does not match the observed ones
- Escaping from sources not fully understood
- Anomalous CR chemical composition cannot be easily explained +
- Spectral anomalies (p, He, CNO have different slopes) +

The SNR paradigm for the origin of CRs

Why SNR are so popular?

- Enough power to supply CR energy density (~10% of the explosion energy) *
- Spatial distribution of SNRs compatible with the CR distribution *
- Presence of non-thermal emission in SNRs *
- A solid theory (DSA) applicable to SNR shocks *

Unsolved issues:

- No evidence of acceleration beyond ~100 TeV even in very young SNRs +
- Predicted gamma-ray spectrum does not match the observed ones
- Escaping from sources not fully understood
- Anomalous CR chemical composition cannot be easily explained
- Spectral anomalies (p, He, CNO have different slopes)

The Galactic propagation model

The basic picture

- CRs diffuse in a magnetic halo larger than the Galactic * disk
- CRs freely escape from the halo boundary (from * Beryllium data $H \gtrsim 5 \,\mathrm{kpc}$)
- Spallation occurs in the Galactic disc *
- Injection from SNR as power law: $Q_{ini}(R) \propto R^{-\gamma_{inj}}$ *
- The diffusion coefficient D(E) is assumed constant * everywhere in the halo:

$$D(R) = \beta D_0 \frac{(R/\text{GV})^{\delta}}{\left[1 + (R/R_b)^{\Delta s/s}\right]^s}$$

• CR advect along z direction: u_{adv}

Ginzburg & Syrovatskii (1964)

Fitting primary CR and secondary/primary

*u*_{adv} $D(R) [D_0 \delta, s]$ γ_{inj}

Heavy elements (CNO) can be fitted with identical injection spectrum determining the Galactic diffusion properties (grammage)

 $Q_{\rm inj} \propto p^{-\gamma} \qquad \gamma_{\rm CNO} = 4.26$

[Evoli, Aloisio, Blasi, PRL 2019]

Heavy elements (CNO) can be fitted with identical injection spectrum determining the Galactic diffusion properties (grammage)

 $Q_{\rm inj} \propto p^{-\gamma} \qquad \gamma_{\rm CNO} = 4.26$

[Evoli, Aloisio, Blasi, PRL 2019]

H and He requires different slopes $\gamma_{\rm H} = 4.31, \ \gamma_{\rm He} = 4.21$

[Evoli, Aloisio, Blasi, PRL 2019]

What are we missing?

Particle acceleration models often apply to isolated SNRs (OK for type Ia SNe) *

However the majority of massive stars born in Star Clusters * ◆ ~80% of Core-Collapse SNe explode in SCs

Several young massive stellar clusters have been associated to diffuse gamma-ray sources *

Stellar clusters and super-bubbles (the elephant in the room)

- Stellar winds from massive stars modify the circumstellar environment
 - Lower density ($n \sim 10^{-3} 0.1$)
 - Higher temperature ($T \sim 10^6 10^8 \text{ K}$)
 - Enhanced magnetic turbulence (+ advection)
- Stellar winds produce shocks
 - Particle acceleration:
 - Young clusters: at wind termination shock
 - <u>Old clusters</u>: at SNR shocks (in modified environment)

Particle acceleration at the wind termination shock

- * Time-stationary transport equation in spherical geometry
- * Particle injection at the termination shock
- * Wind velocity profile form adiabatic bubble
- Arbitrary diffusion coefficient:
 - Few % of wind kinetic energy converted into magnetic energy
- Solution at the shock:

$$f_s(p) = s \frac{\eta_{\text{inj}} n_1}{4\pi p_{\text{inj}}^3} \left(\frac{p}{p_{\text{inj}}}\right)^{-s} e^{-\Gamma_1(p)}$$

What about the grammage traversed in the thick shell?

Gas density

Giant molecular clouds

$\bar{n} \simeq 10 \text{ cm}^{-3}$

Particle density distribution in Giant Molecular Clouds [Hou & Han, 2014]

Gas density

Giant molecular clouds

$\bar{n} \simeq 10 \text{ cm}^{-3}$

Particle density distribution in Giant Molecular Clouds [Hou & Han, 2014]

Idealised wind-blown bubble

Weaver & McCray, ApJ 218 (1977)

> Average density small if diffusion outside the bubble is fast

 $\langle n \rangle \simeq 10^{-2} \, \mathrm{cm}^{-3}$

Gas density

Giant molecular clouds

$\bar{n} \simeq 10 \text{ cm}^{-3}$

Particle density distribution in Giant Molecular Clouds [Hou & Han, 2014]

Idealised wind-blown bubble

Weaver & McCray, ApJ 218 (1977)

 $\langle n \rangle \simeq 10^{-2} \, \mathrm{cm}^{-3}$

Average density felt by diffusing particles \rightarrow depends on the clump distribution And by diffusion around each clump

$$\langle n \rangle \simeq 10 \ \mathrm{cm}^{-3}$$

Shell fragmentation as seen in simulations

The dense shell fragments due to

- 1. Rayley-Taylor instability
- 2. Radiative cooling

L. Lancaster et al. (2021) -HD simulations

H and He spectra escaping from the bubble

[P. Blasi, GM (2024) arXiv:2307.11663]

Heavier nuclei

Spectrum of different species escaping the bubble for a young MSC (like Cygnus OB2 $L_{wind} \gtrsim 10^{38} \text{ erg/s}$)

- * H and He can escape the bubble suffering only a little energy losses
- Spallation for heavier nuclei is much stronger ($\sigma_{sp} \propto A^{0.7}$)
 - Nuclear have a harder spectrum
 - The flux normalisation is suppressed

Possible caveats:

- Heavier nuclei may be mainly produced by SNRs
- SNR acceleration may be modified in wind-bubbles
- Heavier nuclei may be mainly produced at later phase of the bubble, when the diffusion is not suppresses any more

Main effects on the SNR evolution

1. High temperature \Rightarrow low Mach number

Example: first SN expanding into the shocked wind

Shocked wind temperature: Sound speed:

$$k_B T_b = \frac{3}{16} m_p v_w$$
$$c_{\text{sound}} = \sqrt{\gamma k_B T_b / m_p}$$

$$\Rightarrow M = \frac{v_{sh}}{c_s} = 3.6 \left(\frac{v_{sh}}{5000 \,\mathrm{km/s}}\right) \left(\frac{v_w}{2500 \,\mathrm{km/s}}\right)^{-1}$$

CAVEAT:

Temperature may decrease due to radiative losses/heat conduction

$$\tau_{\rm cool} \simeq 6 \left(\frac{T}{10^6 \, K}\right)^{1.7} \left(\frac{n}{0.01 \, {\rm cm}^{-3}}\right)^{-1} \, {\rm Myr}$$

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number

Example: first SN expanding into the shocked wind

If the magnetic field is produced by wind turbulence:

$$\frac{B^2}{4\pi}v_w = \eta_B L_w \Rightarrow B_b \simeq 10, \mu G$$

Than the Alfvénic Mach number is
$$M_A = \frac{v_{\rm sh}}{11} = \sqrt{\frac{4}{11}} \frac{v_{\rm sh}}{11} \gtrsim 4$$

 $v_{\rm A}$

 $\sqrt{11\eta_B} v_w$

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number
 - faster acceleration time

Example: first SN expanding into the shocked wind

If the magnetic field is produced by wind turbulence:

$$\frac{B^2}{4\pi}v_w = \eta_B L_w \Rightarrow B_b \simeq 10, \mu G$$

Than the Alfvénic Mach number is

D2

$$M_A = \frac{v_{\rm sh}}{v_A} = \sqrt{\frac{4}{11\eta_B}} \frac{v_{\rm sh}}{v_w} \gtrsim 4$$

The maximum energy increases:

$$E_{\rm max}^p \simeq 2 \,\mathscr{F} \left(\frac{B_0}{10\mu G}\right) \left(\frac{M_{\rm ej}}{M_{\odot}}\right)^{-\frac{1}{6}} \left(\frac{E_{\rm SN}}{10^{51} {\rm erg}}\right)^{\frac{1}{2}} \left(\frac{n_0}{0.01 {\rm cm}^{-3}}\right)^{-\frac{1}{6}}$$

Diffusion needs to be Bohm-like

Main effects on the SNR evolution

- 1. High temperature \Rightarrow low Mach number
- 2. High turbulence \Rightarrow high magnetic field
 - low Alfvénic Mach number
 - faster acceleration time
 - enhanced syn. losses

Conclusions

- Stellar clusters play a crucial role in the origin of cosmic rays *
 - They host the majority of core-collapse SNe
 - They shape the environment where SNRs expand
 - Powerful stellar winds may accelerate CRs in addition to SNR shocks
- CRs need to escape from the wind-blown bubble structure
 - Instabilities induce fragmentation of the dense bubble shell in small clumps
 - Average density felt by CRs in the bubble $\sim 10 \,\mathrm{cm}^{-3}$ if diffusion in the clumps \sim diffusion in the bubble
 - The accumulated grammage produce harder spectra for heavier species
 - Good for p/He ratio, not for heavier elements

*

It is crucial to better understand the time evolution of both wind bubbles and SNR inside them

BACKUP SLIDES

The Galactic propagation model

Time-stationary transport equation in cylindrical geometry:

$$-\frac{\partial}{\partial z}\left[D(r,p)\frac{\partial f_{\alpha}}{\partial z}\right] + u(z)\frac{\partial f_{\alpha}}{\partial z} - \frac{du}{dz}\frac{p}{3}\frac{\partial f_{\alpha}}{\partial p} + \frac{1}{p^{2}}\frac{\partial}{\partial p}\left[p^{2}\left(\frac{dp}{dt}\right)_{\alpha,\text{ion}}f_{\alpha}\right] + \frac{\mu v\sigma_{\alpha}}{m}\delta(z)f_{\alpha} = Q(z,p) + \Sigma_{\alpha'>\alpha}\mu v\sigma_{\alpha'\to\alpha}\delta(z)f_{\alpha}$$

Assumed free parameters

- Injection from SNR as power law: $Q_{inj}(R) \propto R^{-\gamma_{inj}}$
- The diffusion coefficient D(E) is assumed constant * everywhere in the halo:

$$D(R) = \beta D_0 \frac{(R/\text{GV})^{\delta}}{\left[1 + (R/R_b)^{\Delta s/s}\right]^s}$$

• CR advect along z direction: u_{adv}

Ginzburg & Syrovatskii (1964)

Assuming He with the same slope of CNO, the best fit gives:

 $Q_{\rm inj} \propto p^{-\gamma}$ $\gamma_{\rm HeCNO} = 4.23$

[Evoli, Aloisio, Blasi, PRL 2019]

H requires steeper slope $\gamma_{\rm H} = 4.31$

A self consistent magnetic halo model

Large scale magnetic turbulence

Cosmic Rays

The size of the halo is determined by the competition of advection and cascading $au_{cascade} pprox D_{kk} / v_A^2$ $\tau_{adv} \approx H/v_A$

Turbulent cascading and advection away from the disk

Generate small scale turbulence through streaming instability

Full magnetised halo

 $\tau_{cascade} \approx \tau_{adv} \Rightarrow H \approx \text{kpc}$

Non-linear transport in the Galaxy

Protons Evoli, Blasi, GM, Aloisio, **PRL** (2018)

> Primary nuclei_Z¹⁵ Ne, C, N, O

The same model works well also for other nuclei Evoli, Aloisio, Blasi, PRD 2019

Unstable CR nuclei: Beryllium

Unstable secondary nuclei can be used to constrain the residence time of CRs inside the Galaxy, breaking the degeneracy between *H* and *D*.

- ¹⁰Be is especially useful because of its long half-life of 1.39 My. $^{10}Be \rightarrow ^{10}B$
- Decay reduces the flux of Be at small rigidities such that

$$\gamma \tau_{\text{decay}} \lesssim \tau_{\text{esc}}(R) = \frac{H^2}{2D(R)} \implies R \lesssim 100 \,\text{GV}$$

AMS-02 measurements of **Be/B** are compatible with the standard picture of CR diffusion in a halo with thickness

$$H \gtrsim 5 \text{ kpc}$$

- A different analysis [Weinrich+ A&A 2020] of same data gives $H = 5^{+3}_{-2}$ kpc
- But conclusions are affected by uncertainties on the spallation cross section

