

Does electron capture decay matter?

Revisiting Electron Capture decay in the context of high-precision galactic cosmic-ray data Marta Borchiellini Kapteyn Astronomical Institute, RUG in collaboration with D. Maurin and M. Vecchi

Electron capture decay

e.g.
$${}^{59}_{29}\text{Ni} + e^- \rightarrow {}^{59}_{28}\text{Co} + \nu_e$$

- Electron capture (EC) decaying nuclei decay by capturing a K-shell electron
- Most Cosmic-Ray (CR) nuclei are completely ionized.
- EC decay in CR nuclei depends on attachment and stripping processes

Why to study EC decay?

Direct CRs detection experiments are providing high-precision data on GCR fluxes and are extending the measurements on heavy elements :

AMS-02 high-precision cosmic-ray TOA	Measurements Voyager IS fluxes from H to Ni
fluxes up to Iron (Aguilar et al. 2021)	(Cummings et al. 2016)
Isotopic composition for 29 < Z < 38 by ACE-	Elemental ratios for 26 < Z < 40 by SuperTIGER
CRIS (Binns et al. 2022)	(Murphy et al. 2016)

 \rightarrow We need models as accurate as possible for comparison with data

Why to study EC decay?

Direct CRs detection experiments are providing high-precision data on GCR fluxes and are extending the measurements on heavy elements :

 \rightarrow We need models as accurate as possible for comparison with data

Galaxy model

Good first-order description of the Milky Way for Galactic CR fluxes.

- 1D, observer at z=0
- Thin disk: gas (density n_{ISM}) and CR sources
- Thick halo: diffusion and confinement of CR

Steady-state transport equation for an EC-unstable species

$$\begin{pmatrix} -D \frac{\partial^2 n_0}{\partial^2 z^2} + 2h\delta(z)\{\Gamma^i n_0 + \Gamma^a n_0 - \Gamma^s n_1\} = 2h\delta(z) q \\ -D \frac{\partial^2 n_1}{\partial^2 z^2} + 2h\delta(z)\{\Gamma^i n_1 - \Gamma^a n_0 + \Gamma^s n_1\} + \Gamma^{EC} n_1 = 0 \end{cases}$$

Assuming:

- No convection
- no energy losses
- 2 populated charged states

Steady-state transport equation for an EC-unstable species

$$\begin{cases} -D \frac{\partial^2 n_0}{\partial^2 z^2} + 2h\delta(z)\{\Gamma^i n_0 + \Gamma^a n_0 - \Gamma^s n_1\} = 2h\delta(z) q\\ -D \frac{\partial^2 n_1}{\partial^2 z^2} + 2h\delta(z)\{\Gamma^i n_1 - \Gamma^a n_0 + \Gamma^s n_1\} + \Gamma^{EC} n_1 = 0 \end{cases}$$

Assuming:

- No convection
- no energy losses
- 2 populated charged states

CR number density $n = n_0 + n_1$ $n_0 =$ fully ionized $n_1 =$ one electron attached

Diffusion (random walk) on magnetic inhomogeneites (disk and halo)

$$\left(-D \frac{\partial^2 n_0}{\partial^2 z^2} + 2h\delta(z) \{\Gamma^i n_0 + \Gamma^a n_0 - \Gamma^s n_1\} = 2h\delta(z) q \right)$$
$$\left(-D \frac{\partial^2 n_1}{\partial^2 z^2} + 2h\delta(z) \{\Gamma^i n_1 - \Gamma^a n_0 + \Gamma^s n_1\} + \Gamma^{EC} n_1 = 0 \right)$$

Diffusion (random walk) on magnetic inhomogeneites (disk and halo)

$$\begin{cases} -D \frac{\partial^2 n_0}{\partial^2 z^2} + 2h\delta(z) \{\Gamma^i n_0 + \Gamma^a n_0 - \Gamma^s n_1\} = 2h\delta(z) q \\ -D \frac{\partial^2 n_1}{\partial^2 z^2} + 2h\delta(z) \{\Gamma^i n_1 - \Gamma^a n_0 + \Gamma^s n_1\} + \Gamma^{EC} n_1 = 0 \end{cases}$$

Marta Borchiellini

Generic source

term (disk)

Diffusion (random walk) on magnetic inhomogeneites (disk and halo)

$$\begin{cases} -D \frac{\partial^2 n_0}{\partial^2 z^2} + 2h\delta(z) \{\Gamma^i n_0 + \Gamma^a n_0 - \Gamma^s n_1\} = 2h\delta(z)q \\ -D \frac{\partial^2 n_1}{\partial^2 z^2} + 2h\delta(z) \{\Gamma^i n_1 - \Gamma^a n_0 + \Gamma^s n_1\} + \Gamma^{EC} n_1 = 0 \end{cases}$$

Inelastic interaction rate on gas (disk)

$$\Gamma^{1} = n_{ISM} v \sigma_{inel}$$

Generic source

term (disk)

Characteristic timescales

- Diffusion dominates above a few GeV/n
- Attachment more efficient than stripping for large Z

9 July 2024

Characteristic timescales

Impact on isotopic fluxes

Percentage of CRs isotopes that decays by EC

→ No effect on
 intermediate-lived
 isotopes and for
 E > few GeV/n

→ Short-lived heavy nuclei all decay at low E

Impact on elemental fluxes

Percentage of CRs nuclei that decays by EC

Impact of EC decay on elemental fluxes weighted by isotopic abundances

Short-lived CRs fully decay at low E in Ga and As but not in Ar

Conclusions and perspectives

What we did:

- We computed relevant timescales for GCR fluxes
- We derived solutions for EC decaying isotopes (2-level model)
- We computed the impact of EC decay on isotopic and elemental fluxes

What we found:

- \rightarrow The net effect of EC decay depends both on Z and $\tau_{\rm EC}$
- →Impact on isotopic fluxes \gtrsim ACE-CRIS precision
- \rightarrow Impact on elemental fluxes slightly larger than AMS-02 precision and

~ ACE-CRIS precision

Conclusions and perspectives

Overall, the effect has to be taken properly into account when modelling GCR transport.

Still to be done:

- \rightarrow Further improvement of this analytical model
- \rightarrow Implementing EC in the USINE code to account for:
- energy losses and Solar modulation
- detailed production of the various isotopes

Thank you!

Backup

Solving the transport equations

The trasport equations have been solved analitycally:

- In thin disk approximation
- at z=0, to allow comparison with data

Characteristic timescales

Diffusion	$t_{\rm D} = \frac{L^2}{2D}$	$D \propto E^{0.5}$	
Inelastic scattering	$t_{inel} = \frac{1}{n_{ISM} v \sigma_{inel}}$	$\sigma_{\rm inel} \propto A^{2/3}$	The lower the time, more dominant is the corresponding process
Attachment	$t_a = \frac{1}{n_{ISM} v \sigma_{att}}$	$\sigma_{att} \propto \sigma(E) Z^2$	
Stripping	$t_{s} = \frac{1}{n_{ISM} v \sigma_{strip}}$	$\sigma_{\rm strip} \propto \sigma(E) Z^{-2}$	
EC decay	$t_{EC} = \gamma \tau_{EC}$	t _{EC} ∝ E	

Attachment vs stripping

Fraction of particle that do not attach an e-

- no particle attach e- for
 E>1 GeV/n
- Heavier CRs attach
 more e- tha light ones

EC decaying isotopes

We used a selection of EC decaying isotopes from *Letaw et al., 1984, ApJS, 56, 36* EC decaying isotopes can be classified in two categories:

Isotope	$t_{1/2}$ (Myr)	Isotopic fraction
${}^{7}_{4}{ m Be}$ ${}^{37}_{18}{ m Ar}$ ${}^{41}_{20}{ m Ca}$ ${}^{44}_{22}{ m Ti}$ ${}^{53}_{25}{ m Mn}$ ${}^{67}_{31}{ m Ga}$	$\begin{array}{r} 1.46 \ 10^{-7} \\ 9.58 \ 10^{-8} \\ 1.00 \ 10^{-1} \\ 4.70 \ 10^{-5} \\ 3.70 \\ 8.93 \ 10^{-9} \end{array}$	0.55 0.30 0.07 0.04 0.35 0.07
$^{73}_{33}\mathrm{As}$	$2.20 10^{-7}$	0.36

EC decaying isotopes

We used a selection of EC decaying isotopes from *Letaw et al., 1984, ApJS, 56, 36* EC decaying isotopes can be classified in two categories:

• Short-lived isotopes:

 $\tau_{EC} < 10^{-3}$ Myr

Isotope	$t_{1/2}~({ m Myr})$	Isotopic fraction
$^{7}_{4}\mathrm{Be}$	$1.46 \ 10^{-7}$	0.55
$^{37}_{18}\mathrm{Ar}$	$9.58 10^{-8}$	0.30
$^{41}_{20}\mathrm{Ca}$	$1.00 \ 10^{-1}$	0.07
$^{44}_{22}\mathrm{Ti}$	$4.70 10^{-5}$	0.04
$^{53}_{25}\mathrm{Mn}$	3.70	0.35
$^{67}_{31}\mathrm{Ga}$	$8.93 \ 10^{-9}$	0.07
$^{73}_{33}\mathrm{As}$	$2.20 \ 10^{-7}$	0.36

EC decaying isotopes

We used a selection of EC decaying isotopes from *Letaw et al., 1984, ApJS, 56, 36* EC decaying isotopes can be classified in two categories:

• Short-lived isotopes:

 $\tau_{EC} < 10^{-3}$ Myr

• Intermediate-lived isotopes:

 $10^{-3} < \tau_{EC} < 10^2$ Myr

NB: Escape from the Galaxy before decaying for $\tau_{EC} > 10^2 \; \text{Myr}$

Isotope	$t_{1/2}~({ m Myr})$	Isotopic fraction
$^{7}_{4}\mathrm{Be}$	$1.46 \ 10^{-7}$	0.55
$^{37}_{18}\mathrm{Ar}$	$9.58 \ 10^{-8}$	0.30
$^{41}_{20}$ Ca	$1.00 \ 10^{-1}$	0.07
$^{44}_{22}\mathrm{Ti}$	$4.70 \ 10^{-5}$	0.04
$^{53}_{25}\mathrm{Mn}$	3.70	0.35
$^{67}_{31}\mathrm{Ga}$	$8.93 \ 10^{-9}$	0.07
$^{73}_{33}\mathrm{As}$	$2.20 \ 10^{-7}$	0.36