TESTING SCALE-INVARIANT INFLATION AGAINST COSMOLOGICAL DATA

Tuesday 9th July, 2024 MG17, Pescara

Based on: 2403.04316 - to appear on JCAP -C. Cecchini, M. De Angelis, W. Giaré, M. Rinaldi, S. Vagnozzi

Mariaveronica De Angelis

1 SCALE INVARIANCE AS A FUNDAMENTAL SYMMETRY

2 SCALE-INVARIANT QUADRATIC GRAVITY

INFLATION

How to realise naturally flat inflationary potentials without fine-tuning?

NATURALNESS PROBLEM

How to make divergent quantum corrections naturally small?

RENORMALIZABILITY

Can we find a highly predictive criterion beyond renormalizability?

A fundamental QFT does not involve any intrinsic parameter with dimension mass or length

We introduce an explicit mass scale k

CANONICAL FIELD $\leftarrow \quad \phi = k \; { ilde \phi} \quad o$ Scale-invariant field

The corresponding effective action obeys

$$k\partial_k\Gamma_k[\phi] = \zeta_k[\phi]$$

General solution

$$k\partial_k\Gamma_k[\tilde\phi]=0$$

Particular, scaling solution holding when the canonical fields are expressed in terms of the scale-invariant ones

NATURALLY FLAT POTENTIALS FOR INFLATION

Scale-invariant theory non-minimally coupled to gravity

$$\mathcal{L}_J = \sqrt{-g} \left[\xi \phi^2 R - \lambda \phi^4 - \frac{1}{2} (\partial \phi)^2 \right]$$

Weyl rescaling from the Jordan frame to the Einstein frame

$$\mathcal{L}_E = \sqrt{-\tilde{g}} \left[\frac{M_{Pl}^2}{2} \tilde{R} - M_{Pl}^4 \frac{\lambda}{\xi^2} - \frac{1}{2} (\partial \tilde{\phi})^2 \right]$$

The potential is **FLAT** at tree-level: no fine-tuning

Scale symmetry breaking can occur from quantum corrections

SOLUTION TO THE NATURALNESS PROBLEM

 Coefficients of super-renormalizable terms
 ↓
 Power-law divergences
 $\begin{array}{l} {\sf MASS \ DIMENSION} < 4 \\ {\sf IN \ 3^{+1} \ DIMENSIONS} \end{array}$

Fundamental scale invariance requires only mass dimension 4 Lagrangian terms

Indication that Nature may prefer dimension-4 operators

A CRITERION BEYOND RENORMALIZABILITY

 For general renormalisable theories the effective action remains well defined in the continuum limit if one employs renormalised fields

RENORMALIZED FIELDS $\leftarrow \phi_{R,i}(x) = k^{d_i} f_i(k) \; \widetilde{\phi}_i(x) \;
ightarrow$ Scale-invariant fields

Theories with fundamental scale invariance:

- 1. Renormalizable
- 2. For some choice of the fields the effective action becomes k-independent
- 3. Exact scaling solutions: no free parameters.
 - \rightarrow High predictive power

THE MODEL

 $\mathcal{L}_{EH} \to f(R,\phi)$: scalar-tensor theory

Two additional scalar degrees of freedom

SCALE TRANSFORMATION:
•
$$\bar{g}_{\mu\nu}(x) = g_{\mu\nu}(lx)$$

• $\bar{\phi}(x) = l\phi(lx) \rightarrow \bar{\mathcal{L}} = \mathcal{L}$

Jordan frame

***** The field ϕ is subjected to $V_{\text{eff}}(\phi) = -\frac{\xi}{6}\phi^2 R + \frac{\lambda}{4}\phi^4$

CLASSICAL SCALE-SYMMETRY BREAKING

The scalar field takes a non-zero VEV at the minimum

$$\langle \phi_0^2 \rangle = \frac{\xi R}{3\lambda}$$

DYNAMICAL GENERATION OF MASS SCALE

Natural identification with the Planck mass

$$\frac{\xi}{6}\phi_0^2 R \equiv \frac{1}{2}M_{Pl}^2 R$$

Testing scale-invariant inflation against cosmological data – M. De Angelis

7/21

Scale-invariant quadratic gravity G.Tombalo, M. Rinaldi GenRelGrav49(2017)

EINSTEIN FRAME

 $\mathbf{g}^*_{\mu\nu} = \Omega^2 g_{\mu\nu}$

Two dynamical degrees of freedom: are we in multi-field inflation?

$$\mathcal{L}_{E} = \sqrt{-g} \left[\frac{M^{2}}{2} R - \frac{3M^{2}}{f^{2}} (\partial f)^{2} - \frac{f^{2}}{2M^{2}} (\partial \phi)^{2} - V(f, \phi) \right]$$

Note that M is a redundant parameter

Scale-invariant quadratic gravity

EINSTEIN FRAME: NOETHER'S CURRENT CONSERVED

Constraint on the two-fields dynamics

$$f = \frac{\sqrt{6}M_{Pl}^2}{\sqrt{2M_{Pl}^2 - \phi^2}}$$

Scale-invariant quadratic gravity

NOETHER'S CURRENT CONSERVED

***** Its conservation can be employed to shift all the dynamics on one field $\rho = \rho(f, \phi), \quad \chi = \chi(f, \phi)$

$$\mathcal{L}_E = \sqrt{-g} \left(\frac{M^2}{2} R - \frac{1}{2} \partial_\mu \rho \partial^\mu \rho - 3 \cosh\left[\frac{\rho}{\sqrt{6}M}\right]^2 \partial_\mu \chi \partial^\mu \chi - V(\rho) \right)$$

NOETHER'S CURRENT CONSERVED: single field inflation

- Naturally flat plateau:
 no fine-tuning
- * Non-vanishing at the minima
 - $\chi \rightarrow \text{GOLDSTONE BOSON} \\ \rho \rightarrow \text{INFLATON}$

NOETHER'S CURRENT CONSERVED: entropy perturbations

Employing Noether's current conservation we show that

$$\delta s = 0$$

Scale invariance protects from any form of geometrical destabilization \checkmark

GEOMETRICAL DESTABILIZATION OF INFLATION

S. Renaux-Petel, K. Turzyński Phys.Rev.Lett.117 (2016)

- Multi-field inflation
- \cdot Hyperbolic fields' space geometry $ightarrow m_{s({
 m eff})}^2 < 0$

 \rightarrow Instability prematurely ending inflation

NUMERICAL ANALYSIS

Initial conditions	Constraints	Uniform prior ranges
$ ho_{ m ini}/M_p$	(unconstrained)	$\rho_{\rm ini}/M_p \in [0.1, 2]$
$\chi_{ m ini}/M_p$	(unconstrained)	$\chi_{\rm ini}/M_p \in [0.1, 10]$
Model parameters	Constraints	Uniform prior ranges
ξ	< 0.00142	$\log_{10}(\xi) \in [-5, -1]$
α	$1.951^{+0.076}_{-0.11} \times 10^{10}$	$10^{-10} \times \alpha \in [1,3]$
Ω	$0.93^{+0.72}_{-2.8} \times 10^{-5}$	$\Omega \in [\xi^2, 2\xi^2]$
Primordial spectra parameters	Constraints	
A_s	$(2.112 \pm 0.033) \cdot 10^{-9}$	(derived)
n_s	$0.9638^{+0.0015}_{-0.0010}$	(derived)
α_s	$< 1.2 \times 10^{-4}$	(derived)
r	> 0.00332	(derived)

OBSERVATIONAL CONSTRAINTS

- **\ast** Strong correlation between Ω and ξ to avoid eternal inflation;
- Overall insensitivity to initial conditions;
- * $\xi < 0.00142$ (95% C.L.): conformal invariance is ruled out.

SCALE INVARIANCE VS STAROBINSKY

$$\mathcal{L} = \sqrt{-g} \frac{M_{Pl}^2}{2} \left[R + \frac{R^2}{6M^2} \right]$$

$$\downarrow$$
SCALF-INVARIAN

Starobinsky's model is scale-invariant when the R^2 term dominates!

Can we discriminate between the two models?

SCALE INVARIANCE VS STAROBINSKY

SCALE INVARIANCE VS STAROBINSKY

* Scale-invariant inflation

$$n_s \simeq 1 - \frac{1}{3}\sqrt{3r + 64\xi^2}$$

* Starobinsky inflation $(\alpha = 1)$

$$n_s \simeq 1 - \sqrt{\frac{r}{3}}$$

As soon as $\xi \neq 0$ and therefore the non-minimal coupling $\phi^2 R$ is turned on, the predictions of the two models differ

- Fundamental scale invariance as a solution to the flat potential problem for inflation
- Scale-invariant quadratic gravity: Noether's current conservation for single-field dynamics and vanishing entropy perturbations
- Promising numerical result: the model is competitive with Starobinsky

- Fundamental scale invariance as a solution to the flat potential problem for inflation
- Scale-invariant quadratic gravity: Noether's current conservation for single-field dynamics and vanishing entropy perturbations
- Promising numerical result: the model is competitive with Starobinsky

THANK YOU!