
Acknowledgement and thanks to Giacomo Rosati and

Giovanni Amelino-Camelia for many helpful discussions!

1 / 21

Beyond Center for Fundamental Science, ASU

Quantum gravity effects in
spacetimes with a
fundamental length scale
Phil Tee and Paul Davies
ptee2@asu.edu, paul.davies@asu.edu

July 9, 2024



1 Why Pixelate Spacetime?

2 A Phenomenology Framework

3 Vacuum Results

4 Accelerating Detectors

5 Final Remarks

2 / 21

Contents



Why Pixelate?



𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 = 8𝜋𝐺

𝑐4
𝑇𝜇𝜈

Mass & Energy Dictate Geometry

But Matter & Energy are Quantized

• A quantum 𝑇𝜇𝜈 implies a pixelated 𝑅𝜇𝜈

• What does that mean? How can we describe this?
• A fundamental roadblock for quantum gravity.
• Are the continuum and even real numbers just an idealization of reality?
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The Consistency Conundrum



𝑟𝑆 =
2𝐺𝑀

𝑐2
𝑟𝑆 = 𝜆𝑐 𝜆𝑐 =

ℏ
𝑀𝑐

Minimum Compton Wavelength 𝜆𝑐 ≥ 𝑟𝑆

Smallest measurable length without an event horizon
At the limit 𝑙𝑝 = 𝜆𝑐 = 𝑟𝑆 , eliminate 𝑀, ignore factor of 2

“Planck Length" 𝑙𝑃 =

√︃
𝐺ℏ
𝑐3

Actual length scale may be bigger
Ref: Hossenfelder2012
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Where Spacetime Breaks Down?



∫ Λ

0
d4𝑘
(2𝜋)4

1
𝑝2−𝑚2+𝑖𝜖

• Λ defines the cut-off
• Fundamental scale would imply a Λ ∝ 𝑙−1

𝑃

• Do quantum fields "work" better in pixelated spacetime?
• Renormalization not needed to eliminate singularities!

• Non-zero minimum length = no singularities
Ref: Snyder1947
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Quantum Fields & Renormalization



1 Spacetime at the smallest scale is discrete, pixelated
2 Continuum is more graph like, and only a manifold in the infra red limit
3 Can this pixelation have measurable consequences for QFT?
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Hypothesis



A Phenomenology Framework



Modified propagators (massless case) lead to new Feynman rules

𝐸2 = 𝑝2 + 𝜅𝜂2𝑝4 ↔ 𝜕2𝜙

𝜕𝑡2
− 𝜕2𝜙

𝜕𝑥2
+ 𝜅𝜂2

𝜕4𝜙

𝜕𝑥4
= 0

𝜂 ∝ 1
𝑀𝑃

𝑛(𝑘) =
√
1+𝜅𝜂2𝑘2

1+2𝜅𝜂2𝑘2
Leading order in inverse Planck Mass Vacuum is now dispersive

𝜅 < 1, 𝑛(𝑘 ) > 1, and 𝜅 > 1, 𝑛(𝑘 ) < 1

Modified propagators and corresponding equation of motion

𝑝
= 1

𝑝20−𝑝2(1+𝜅𝜂2𝑝2)+𝑖𝜖

Altered Feynman rules for propagator

• Doubly Special Relativity (DSR) proposes modified propagators as a consequence
of fundamental length

• DSR is a framework to admit an observer independent fundamental length whilst
preserving Lorentz symmetries

• Propagators can be parameterized by Planck scale and for sub and super luminal
propagation

Ref: Amelino-Camelia 2002
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Modified Propagators to QFT



Lorentz covariant DSR interpreted as non-trivial momentum space ge-
ometry. Non trivialmomentumspacegeometry hasa longhistory trac-
ing back to Snyder (Snyder 1947) and Born (Born 1938).

𝑔M𝜇𝜈 𝑝
𝜇𝑝𝜈 ≠ 𝑝20 −

∑
𝑖

𝑝2
𝑖

Momentum space is not flat

On-shell relation carries extra powers of ®p

Minimal length implies [𝑥, 𝑝] is a
function of 𝑝,

or geometry is non-commutative[
𝑥𝑖 , 𝑥 𝑗

]
≠ 0

Integrals over off-shell momentum
need modification of momentum
integrals∫
d𝑛 𝑝 →

∫ √−𝑔d𝑛 𝑝 to restore Lorentz

invariance?
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Curved Momentum Space and Measure



𝑧𝐴𝑧
𝐴 = 𝑧20 − 𝑧21 − 𝑧22 − 𝑧23 − 𝑧24 = − 1

𝛼2

𝑧1

𝑧2

𝑧3

Closed slice
through hyperboloid

• Momentum space de Sitter, curvature radius 𝛼

• Embedding in 5D Minkowski restricted to surface 𝑧𝐴𝑧
𝐴 = − 1

𝛼2

• For 𝑛 dimensions define 𝛼2 =
2𝜅𝜂2

𝑛
and:

𝑧0 =
(
𝛼2

)− 1
2 sinh

[ (
𝛼2

) 1
2 𝑝0

]
,

𝑧𝑖 = cosh

[ (
𝛼2

) 1
2 𝑝0

]
𝑝𝑖 ,with

𝑖=𝑛∑︁
𝑖=1

𝑝2
𝑖 =

(
𝛼2

)−1 .

• Embedding in 5D Minkowski restricted to surface 𝑧𝐴𝑧
𝐴 = − 1

𝛼2

• Gives leading order non-diagonal momentum space metric:

𝑔𝜇𝜈 =

(
1 0
0 −𝛿𝑖 𝑗 − 𝛼2 [𝑝2

0 𝛿𝑖 𝑗 + 𝑝𝑖 𝑝 𝑗 ]

)
,

𝑔𝜇𝜈 =

(
1 0
0 −𝛿𝑖 𝑗 + 𝛼2 (𝑝2

0 𝛿𝑖 𝑗 + 𝑝𝑖 𝑝 𝑗 )

)
.

• Leading order on-shell and √−𝑔:

√−𝑔 = 1 + 𝜅 𝜂2 𝑝2
0 , 𝐸2 = 𝑝2 + 𝜅 𝜂2 𝑝4 .

With thanks to G.Rosati, Ref: Amelino-Camelia et al. 2012 11 / 21

Choosing a Measure



Position space propagators and density of states

Position space propagators
(Hadamard)

computed to leading order in 𝜅 𝜂2

𝐷 (𝑡 , 𝑥; 𝑡 ′ , 𝑥′ ) =
∞∫

−∞

d𝑛 𝑝

(2𝜋)𝑛
𝑒−𝑖 [𝑝0 (𝑡−𝑡′ )−®p·(®x− ®x′ ) ]

𝑝2
0
−𝑝2 (1+𝜅𝜂2𝑝2 )

𝐷 (1) (𝜎2 ) = − 1

2𝜋2

{
1

𝜎2 − 𝜅𝜂2

𝜎4

}
,

𝜎2 = 𝑡2 − 𝑟2 − 𝑖 𝜖

"Point Splitting"

⟨0 |𝑇𝜇𝜈 |0⟩ =
〈
0
�� (𝜕𝜇𝜙𝜕𝜈 𝜙 − 1

4
𝑔𝜇𝜈𝜕𝜇𝜙𝜕

𝜇𝜙
) ��0〉,

⟨0 | (𝜕𝑥 𝜙)2 |0⟩ = 1
2
lim𝑥′→𝑥 𝜕𝑥𝜕𝑥′𝐷

(1) (𝑥, 𝑥′ )

Density of states integrals to leading order in 𝜅 𝜂2

𝜌(𝜔) = 𝜔2√−𝑔d𝜔

2𝜋2

log 𝑍 = 1

2𝜋2

∞∫
0

𝜔2 log 𝑍
√−𝑔d𝜔,

⟨𝐸 ⟩ = − 𝜕 log 𝑍
𝜕𝛽

"First Order Metric Determinant"

⟨𝐸 ⟩ = − 1

2𝜋2
𝜕
𝜕𝛽

∞∫
0

(𝜔2 + 𝜅 𝜂2𝜔4 ) log 𝑍
√−𝑔d𝜔,

Ref: P. C. Davies and Tee 2024
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Putting it Together



Vacuum Results



Values from both methods (almost) agree

Thermalized propagator
renormalized by point

splitting

〈
𝑇𝜇𝜈

〉
=

(
𝜋2

30𝛽4 + 𝜅 𝜂2 𝜋4

126𝛽6

) 
1 0 0 0
0 1

3 0 0
0 0 1

3 0
0 0 0 1

3



Thermal vacuum partition
function with modified

measure

⟨𝐸⟩ = 𝜋2

30𝛽4 + 8𝜅 𝜂2 𝜋4

126𝛽6

Slightly higher value for
Density of States

due to unrealistic upper
integral limit
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Free Space - Two ways



Obtained values follow similar pattern

Propagator with boundary
enforced by images

renormalized by point
splitting

〈
𝑇𝜇𝜈

〉
= −𝜋2

1440𝑎4

(
1 − 5𝜅 𝜂2 𝜋2

42𝑎2 . . .

) 
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 3



Regularized 3 + 1
Hamiltonian

with “Fierz” regulator

⟨𝑇𝑡𝑡 ⟩ = −𝜋2

1440𝑎4

(
1 − 12𝜅 𝜂2 𝜋2

42𝑎2

)

Density of States has larger
contribution due to upper limit

𝜅 < 0 entails negative energy
density.

Combination of measure and
propagator should resolve this

(see next section)

Ref: P. C. Davies and Tee 2024; Brown and Maclay 1969; Fierz 1959 15 / 21

Adding a boundary - Casimir



Accelerating Detectors



Uniformly accelerated particle detector in a vacuum

Particle detector minimally
coupled to scalar QFT

uniformly accelerated with
inverse acceleration 𝛼

𝑥 = 𝑦 = 0, 𝑧 = (𝑡2 + 𝛼2) 1
2

With proper time 𝜏

𝑧 = 𝛼 cosh 𝜏
𝛼
, 𝑡 = 𝛼 sinh 𝜏

𝛼

Transition rate of detector
given by:

𝑐2
∑
𝐸

|⟨𝐸 |𝑚(0) |𝐸0⟩|2
∞∫

−∞
d(Δ𝜏) 𝑒𝑖 (𝐸−𝐸0 )Δ𝜏𝐷+ (Δ𝜏)

Strictly positive detector
response function:

F (𝐸) =
∞∫

−∞
d(Δ𝜏) 𝑒𝑖 (𝐸−𝐸0 )Δ𝜏𝐷+ (Δ𝜏)

Ref: Unruh 1976; P. C. Davies 1975; DeWitt 1979
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The Davies-Fulling-Unruh Detector



Computed without modified measure

Correction term not strictly
positive!

F (𝐸) =
{(
1 + 𝜅 𝜂2

6𝛼2

)
𝐸−𝐸0

𝑒2𝜋 (𝐸−𝐸0 )𝛼−1 +
(
𝜅 𝜂2

6

)
(𝐸−𝐸0 )3

𝑒2𝜋 (𝐸−𝐸0 )𝛼−1

}
Recall 𝜅 < 0 for sub-luminal

propagation

Introduction of measure flips sign
of propagator correction, resolving tension!

F (𝐸) =
{(
1 − 𝜅 𝜂2

6𝛼2

)
𝐸−𝐸0

𝑒2𝜋 (𝐸−𝐸0 )𝛼−1 −
(
𝜅 𝜂2

6

)
(𝐸−𝐸0 )3

𝑒2𝜋 (𝐸−𝐸0 )𝛼−1

}
Ref: P. C. W. Davies and Tee 2023
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Negative Transition Probabilities



Final Remarks



Puzzles & Lines of Inquiry

• There are many curved spacetime models we can attack with this
framework

• In unpublished (ongoing) work, accelerating mirrors appear not to resolve
negative probability tension with modified measure!

• Other results on gravitational lensing (Tee and Jafari 2022) indicate
cosmological detection of leading order 𝜅𝜂2 corrections still ambitious

• Work continues to detect other inconsistencies (Hawking radiation, 1-loop
QFT)

• We are still working to connect eigenmode sums from the implied
equation of motion 𝜕2𝜙

𝜕𝑡2
− 𝜕2𝜙

𝜕𝑥2 + 𝜅𝜂2
𝜕4𝜙

𝜕𝑥4 = 0 to our modified propagator
• Fundamental thermodynamic quantities such as the partition function

need reconciliation with pixelation and in particular “pixelgenesis” for
expanding cosmologies
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Directions and Final Remarks



Thank You & Questions
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