

Beyond ANTARES: the future of neutrino telescopes, a short review.

Vincent Cecchini

Instituto de Física Corpuscular (CSIC - Universitat de València)

17th Marcel Grossmann meeting, Pescara 11/07/2024

"Describe the continuation of neutrino astronomy in the Mediterranean Sea with [...] the prospects of incoming neutrino telescopes in the following years."

 \rightarrow A talk about the future of High Energies (HE) Neutrinos searches

- The potential of High Energies Neutrinos for astrophysics
- A focus on the future experiments

 \rightarrow A talk NOT about < TeV searches, nor past experiments.

"Describe the continuation of neutrino astronomy in the Mediterranean Sea with [...] the prospects of incoming neutrino telescopes in the following years."

- \rightarrow A talk about the future of High Energies (HE) Neutrinos searches
 - The potential of High Energies Neutrinos for astrophysics
 - A focus on the future experiments

 \rightarrow A talk NOT about < TeV searches, nor past experiments.

"Describe the continuation of neutrino astronomy in the Mediterranean Sea with [...] the prospects of incoming neutrino telescopes in the following years."

- \rightarrow A talk about the future of High Energies (HE) Neutrinos searches
 - The potential of High Energies Neutrinos for astrophysics
 - A focus on the future experiments

 \rightarrow A talk NOT about < TeV searches, nor past experiments.

Contents

Introduction

- 2 The Water Cherenkov Neutrino Telescopes
 - Generalities on Water Cherenkov NTs
 - Experiments foreseen in the coming decades
- 3 Air shower (non radio) detection
 - Air shower imaging detectors
 - Surface Detector arrays
- 4 Radio detection of shower
 - Air shower radio detection
 - Radio detection in the ice
- Conclusions

Neutrinos production mechanisms

Thermal mechanisms

- Beta decays & EC $n \rightarrow p + e^{-} + \overline{v_e}$ $p \rightarrow n + e^{+} + v_e$ $p + e^{-} \rightarrow n + v_e$
- Nuclear fusion $p + p \rightarrow D + e^+ + v_e$
- \rightarrow Low energies: keV to ${\sim}\text{MeV}$

Hadronic acceleration processes

Particle acceleration and collisions

• $pp \rightarrow \pi^{+/-/0}$ mechanism

• $p + \gamma \rightarrow (\Delta^+ \rightarrow) \pi^+ + n \text{ or } \rightarrow \pi^0 + p \text{ mechanism}$ Meson production \rightarrow Pion decay:

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}})$$
$$\mu^{\pm} \to \overline{\nu_{\mu}}(\nu_{\mu}) + \nu_{e}(\overline{\nu_{e}}) + e^{\pm}$$

Energy transfer from primary p to final states: $E_v \sim E_p/20$. Palladino *et al.* Universe 2020. $v_\mu : v_e : v_\tau$ flavor ratio 2:1:0 $\xrightarrow{\text{oscillation}}$ 1:1:1 (TBD $\pi^0 \rightarrow \gamma + \gamma \implies v$ and γ produced together.

 \rightarrow HE neutrinos requires acceleration mechanisms from violent events in universe.

Neutrinos production mechanisms

Thermal mechanisms

- Beta decays & EC $n \rightarrow p + e^{-} + \overline{v_e}$ $p \rightarrow n + e^{+} + v_e$ $p + e^{-} \rightarrow n + v_e$
- Nuclear fusion $p + p \rightarrow D + e^+ + v_e$
- \rightarrow Low energies: keV to ${\sim}\text{MeV}$

Hadronic acceleration processes

Particle acceleration and collisions

• $pp \rightarrow \pi^{+/-/0}$ mechanism

• $p + \gamma \rightarrow (\Delta^+ \rightarrow) \pi^+ + n \text{ or } \rightarrow \pi^0 + p$ mechanism Meson production \rightarrow Pion decay: $\pi^{\pm} \rightarrow \mu^{\pm} + \gamma_{\nu}(\overline{\gamma_{\nu}})$

$$\mu^{\pm} \rightarrow \frac{\mu(\mu)}{\nu_{\mu}} + \nu_{e}(\overline{\nu_{e}}) + e^{\pm}$$

Energy transfer from primary p to final states: $E_v \sim E_p/20$. Palladino et al. Universe 2020. $v_\mu : v_e : v_\tau$ flavor ratio 2:1:0 $\xrightarrow{\text{oscillation}}$ 1:1:1 (TBD $\pi^0 \rightarrow \gamma + \gamma \implies v$ and γ produced together.

 \rightarrow HE neutrinos requires acceleration mechanisms from violent events in universe.

Neutrinos production mechanisms

Thermal mechanisms

- Beta decays & EC $n \rightarrow p + e^- + \overline{v_e}$ $p \rightarrow n + e^+ + v_e$ $p + e^- \rightarrow n + v_e$
- Nuclear fusion $p + p \rightarrow D + e^+ + v_e$
- \rightarrow Low energies: keV to ${\sim}\text{MeV}$

Hadronic acceleration processes

Particle acceleration and collisions

• $pp \rightarrow \pi^{+/-/0}$ mechanism

• $p + \gamma \rightarrow (\Delta^+ \rightarrow) \pi^+ + n \text{ or } \rightarrow \pi^0 + p$ mechanism Meson production \rightarrow Pion decay:

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}(\overline{\nu_{\mu}})$$
$$\mu^{\pm} \to \overline{\nu_{\mu}}(\nu_{\mu}) + \nu_{e}(\overline{\nu_{e}}) + e^{\pm}$$

Energy transfer from primary p to final states: $E_{\nu} \sim E_{p}/20$. Palladino *et al.* Universe 2020. $\nu_{\mu}: \nu_{e}: \nu_{\tau}$ flavor ratio 2:1:0 $\xrightarrow{\text{oscillation}}$ 1:1:1 (TBD) $\pi^{0} \rightarrow \gamma + \gamma \implies \nu$ and γ produced together.

 \rightarrow HE neutrinos requires acceleration mechanisms from violent events in universe.

Neutrinos at earth, where are they coming from?

Right part of spectra ⇔ Low flux

- Thermal mechanisms from astrophysical object (keV-~MeV, dominated by the sun)
- Supernova neutrinos (MeV-GeV)
- pp/p γ acceleration at astrophysical sources (TeV-10s PeV): v_{astro}
- UHE CRs interaction with CMB: "cosmogenic"
- CRs interactions with atmosphere: v_{atmos}
 → no pointing = background for NTs
- * High Energy (HE) > 100 TeV;
- * Ultra-High Energy (UHE) > 100 PeV.

Neutrinos at earth, where are they coming from?

Right part of spectra ⇔ Low flux

- Thermal mechanisms from astrophysical object (dominated by the sun)
- Supernova neutrinos
 - \rightarrow Below the E threshold of this presentations
- pp/pγ acceleration at astrophysical sources (TeV-10s PeV): v_{astro}
- UHE CRs interaction with CMB: "cosmogenic"
- CRs interactions with atmosphere: v_{atmos}
 → no pointing = background for NTs

* High Energy (HE) > 100 TeV;

* Ultra-High Energy (UHE) > 100 PeV.

Neutrinos at earth, where are they coming from?

Right part of spectra \Leftrightarrow Low flux

- Thermal mechanisms from astrophysical object (dominated by the sun)
- Supernova neutrinos
 - \rightarrow Below the E threshold of this presentations
- pp/p γ acceleration at astrophysical sources (TeV-10s PeV): v_{astro}
- UHE CRs interaction with CMB: "cosmogenic"
- ORs interactions with atmosphere: v_{atmos}
 → no pointing = background for NTs
- * High Energy (HE) > 100 TeV;
- * Ultra-High Energy (UHE) > 100 PeV.

HE v interactions:

Charged and Neutral Current (CC:NC ratio 2:1)

- v_{μ} CC \rightarrow Muon track (kinematic deviation $\phi_{\nu l} \approx (E_{\nu}/\text{TeV})^{-0.55}$ (see PDG, Phys. Rev. D 110, 030001 (2024)
- v_e CC, v_τ CC, all NC \rightarrow Particles cascades

NB: Double-bang separation (interaction and decay vertex distance): $\approx (E_{\tau} \times 50 \text{ m/PeV})$ (see

IC-Gen2 TDR (2023)

5

HE v interactions:

Charged and Neutral Current (CC:NC ratio 2:1)

- v_{μ} CC \rightarrow Muon track (kinematic deviation $\phi_{\nu l} \approx (E_{\nu}/\text{TeV})^{-0.55}$ (see PDG, Phys. Rev. D 110, 030001 (2024))
- v_e CC, v_τ CC, all NC \rightarrow Particles cascades

NB: Double-bang separation (interaction and decay vertex distance): $\approx (E_{\tau} \times 50 \text{ m/PeV})$ (see

IC-Gen2 TDR (2023)

$v_{\mu}CC$ tracks \implies **Good pointing**

HE v interactions:

Charged and Neutral Current (CC:NC ratio 2:1)

- v_{μ} CC \rightarrow Muon track (kinematic deviation $\phi_{\nu l} \approx (E_{\nu}/\text{TeV})^{-0.55}$ (see PDG, Phys. Rev. D 110, 030001 (2024))
- v_e CC, v_τ CC, all NC \rightarrow Particles cascades

NB: Double-bang separation (interaction and decay vertex distance): $\approx (E_{\tau} \times 50 \text{ m/PeV})$ (see

IC-Gen2 TDR (2023)

$v_{e,\tau}CC+$ all NC Cascades/Shower \implies Good energy resol.

HE v interactions:

Charged and Neutral Current (CC:NC ratio 2:1)

- v_{μ} CC \rightarrow Muon track (kinematic deviation $\phi_{\nu l} \approx (E_{\nu}/\text{TeV})^{-0.55}$ (see PDG, Phys. Rev. D 110, 030001 (2024))
- v_e CC, v_τ CC, all NC \rightarrow Particles cascades

NB: Double-bang separation (interaction and decay vertex distance): $\approx (E_{\tau} \times 50 \text{ m/PeV})$ (see

IC-Gen2 TDR (2023)

HE v interactions:

Charged and Neutral Current (CC:NC ratio 2:1)

- v_{μ} CC \rightarrow Muon track (kinematic deviation $\phi_{\nu l} \approx (E_{\nu}/\text{TeV})^{-0.55}$ (see PDG, Phys. Rev. D 110, 030001 (2024))
- v_e CC, v_τ CC, all NC \rightarrow Particles cascades

NB: Double-bang separation (interaction and decay vertex distance): $\approx (E_{\tau} \times 50 \text{ } m/\text{PeV})$ (see

IC-Gen2 TDR (2023)

Interaction outcomes:

Cherenkov light production from relativistic particles.

 \rightarrow Cherenkov light: Firsts parts of this talk. (1) in water, (2) in air.

The **particles them-self** (in part 2).

Radio emission from cascades movement in ice and air.

→ Third part of this talk.

HE v interactions:

Charged and Neutral Current (CC:NC ratio 2:1)

- v_{μ} CC \rightarrow Muon track (kinematic deviation $\phi_{\nu l} \approx (E_{\nu}/\text{TeV})^{-0.55}$ (see PDG, Phys. Rev. D 110, 030001 (2024))
- v_e CC, v_τ CC, all NC \rightarrow Particles cascades

NB: Double-bang separation (interaction and decay vertex distance): $\approx (E_{\tau} \times 50 \text{ m/PeV})$ (see

IC-Gen2 TDR (2023)

Interaction outcomes:

Cherenkov light production from relativistic particles.

 \rightarrow Cherenkov light: Firsts parts of this talk. (1) in water, (2) in air.

The particles them-self (in part 2).

Radio emission from cascades movement in ice and air. → Third part of this talk.

HE v interactions:

Charged and Neutral Current (CC:NC ratio 2:1)

- v_{μ} CC \rightarrow Muon track (kinematic deviation $\phi_{\nu l} \approx (E_{\nu}/\text{TeV})^{-0.55}$ (see PDG, Phys. Rev. D 110, 030001 (2024))
- v_e CC, v_τ CC, all NC \rightarrow Particles cascades

NB: Double-bang separation (interaction and decay vertex distance): $\approx (E_{\tau} \times 50 \text{ m/PeV})$ (see

IC-Gen2 TDR (2023)

Interaction outcomes:

Cherenkov light production from relativistic particles.

 \rightarrow Cherenkov light: Firsts parts of this talk. (1) in water, (2) in air.

The **particles them-self** (in part 2).

Radio emission from cascades

movement in ice and air.

 \rightarrow Third part of this talk.

The HE neutrino science cases

 \rightarrow Identify neutrino **point sources** (detection of several neutrinos from a single source).

 $\rightarrow v \Leftrightarrow$ undeflected signature of hadronic interactions.

Probe models of particle acceleration in extreme environments (*eg:* coincidence $\gamma + \nu$ would prove the hadronic process, unveiling the CR acceleration mechanism)

Multi-Messenger astrophysics: Access the universe without deflection and (low) absorption ; trigger fast/early alerts.

 \rightarrow Where are the highest energy cosmic rays sources? $E_{CR} > 100 \text{ EeV} \implies$ EeV ν should exist.

1 Are UHE v really there?

2 Measure UHE neutrino spectrum \rightarrow Constrain UHECRs propagation & source properties.

Where are we? [addressed in C. Raab talk (Jul. 11)]

- 2013: diffuse HE astrophysical neutrinos flux (IceCube, Science 342 (2013)), (IceCube, Phys. Rev. Lett. 113 (2014)

More PS & Multi-messenger astrophysics:

- 2018: Neutrino coincidence with EM radiation from the blazar TXS0506+056 Science 361 (2018)
- 2022: 4.2 σ evidence for PS emission from the AGN NGC1068 [LecCube, Science 378 (2022)]

V. Cecchini (IFIC Valencia)

Contents

Introduction

- 2 The Water Cherenkov Neutrino Telescopes
 Generalities on Water Cherenkov NTs
 Experiments foreseen in the coming decades
- 3 Air shower (non radio) detection
 - Air shower imaging detectors
 - Surface Detector arrays
- 4 Radio detection of shower
 - Air shower radio detection
 - Radio detection in the ice
- Conclusions

A global network of NTs?

Sky coverage complementarity

FoV for up-going sky of IceCube (green), Baikal (Red), KM3NeT (Blue), P-ONE (grey). *Courtesy* Juan Palacios-Gonzalez (IFIC, KM3NeT) Horizontal (VHE) v visibility of IceCube (Blue) and TRIDENT (red, TRIDENT (CGTN news))

Baikal-GVD: Gigaton Volume Detector

Location	Baikal Lake		27 cl
(51°46N, 104°24E)		2	3×12
Max. Depth	1275 m	Ikm y	Centr
Nb. Strings [OM]	214 [7776]	500n	cluste
Dist. inter- Str [OM]	60 m [15 m]	Cose/MICC (to store) N	Froze
Strings height	525 m		cost-e
Instrumented Vol.	1 km ³		
Energy range	TeV-100 PeV	0 2 0 2 0 1 1425. • • • 13004	
Trk angular resol.	0.2°		
Design ⁵⁷ Pro 2010	port ptotyping ^{1st} GVD-I 2015 20	8 clust. 14 clust. 020 2025	
Pa	S (ICRC2023) 976 Baikal Scientifi	ic-Technical Report Dvornicky, N	eutrino2024

27 cluster of 8 lines. 3×12 OMs (1PMT) / line. Central distance between cluster: 300 m Frozen lake \implies

cost-efficient deployment.

27 clust.

2030

2035

11

Some Baikal-GVD results

Track-like (Baikal-GVD preliminary):

green: multi-clust (v_{atm} dominated); red: >100 TeV single clust.

$> 3\sigma$ evidence of astrophysical v flux (agreement with IceCube and ANTARES).

V. Cecchini (IFIC Valencia)

12

KM3NeT: Kilometer³ Neutrino Telescope

One collaboration, one (OM) technology, two telescopes, two energy ranges:

- ARCA (<u>Astroparticle</u> Research with Cosmics in the Abyss): Offshore of Sicily.
 Optimized for E > TeV.
- ORCA (<u>Oscillation</u> Research with Cosmics in the Abyss) Offshore of Toulon.
 Optimized for E in [GeV - TeV].
- \rightarrow (Main) Difference: ARCA volume, inter-strings and inter-OM distances \gg ORCA

KM3NeT: Wide energy range and physics cases, under construction but already taking data.

KM3NeT/ARCA: Astroparticle Research with Cosmics in the Abyss

Location	100km S.E. Sicily	
	(26°16N, 16°06E)	
Max. Depth	3450 m	
Nb. Strings [OM]	230 [4140]	
Dist. inter- Str [OM]	90 m [36 m]	
Strings height	700 m	
Instrumented Vol.	1 km ³	
Energy range	0.2 TeV - PeV	
Trk angular resol.	0.1°	

2 Building Blocks (BB) of 115 lines (18 DOMs). Central distance: ~1000 m Multi-PMT DOMs $(31PMT) \rightarrow coverage,$ directionality, single DOM

triggering.

Some KM3NeT results [reported in S. Biagi talk (Jul. 9)]

Diffuse Flux - All Sky & Galatic plane

KM3NeT/ARCA Angular Resolution

CCSN sensitivity of ARCA28+ORCA24

KM3NeT/ARCA6-21 PS sensitivity

V. Cecchini (IFIC Valencia)

Neutrino telescopes review

P-ONE: Pacific Ocean Neutrino Experiment

Location	Cascadia Basin (~48°N, 129°W)		<u>Particularities</u> : - Multi-PMT DOMs
Max. Depth	2660 m		(16 PMT/OM)
Nb. Strings [OM]	70 [1400]		- Cluster Geometry
Dist. inter- Str [OM]	80 m [50 m]		(Intercluster 400 m).
Strings height	1000 m		
Instrumented Vol.	~1 km ³	-1000 -400 -000 \$ 300 kin x [74]	
Energy range	TeV-PeV		
Trk angular resol.	~ 0.1°		
STRAN PF	STRANN-b	ttr 10 str deploy. start	
2015 20	20 2025	2030	2035 2040
Agostini, Nat. As	tron., s41550-023-02087-6 (2023)	Malecki, Universe 2024, 10(2), 53	PoS (ICRC2023) 1175
V. Cecchini (IFIC Valencia)	Neutrin	o telescopes review	MG17 Pescara, 11/07/2024 1

TRIDENT: Tropical Deep-sea Neutrino Telescope

Location	S. China Sea	
	(17.4°N, 114.0°E)	
Max. Depth	3500 m	
Nb. Strings [OM]	1211 [24220]	
Dist. inter- Str [OM]	70/110m [30m]	
Strings height	700 m	
Instrumented Vol.	8 km ³	
Energy range	>TeV	
Trk angular resol.	0.1°	

20 DOMs per line; Penrose tiling shape; **Hybrid OM**: PMT+SiPM \rightarrow timing, waveform analysis (ν_{τ})

V. Cecchini (IFIC Valencia)

17

HUNT (Huge Underwater high-energy Neutrino Telescope)

Location	Baikal / S. China Sea	
Max. Depth	1300 / 2500-3400	
Nb. Strings [OM]	2304 [55300]	
Dist. inter- Str [OM]	130 m [30 m]	
Strings height	860 m	
Instrumented Vol.	~30 km ³	
Energy range	>100 TeV	
Trk angular resol.	0.1°	

Single PMT OMs (24 OMs/line) ~30 km³ \rightarrow huge size detector. PathFinders ongoing, CDR soon?

Huang, PoS (ICRC2023) 1080

IceCube Upgrades, Phase-1 [see C. Raab talk (Jul. 11)]

IC(86) + 7 strings in 2025-2026, 2150-2425 m depth,

IceCube, PoS (ICRC2019) 1031

Purposes:

- Improve angular error reco. (retroactive to IC datas)
- Enhances sensitivity to
 - HE cosmic neutrino fluxes
 - oscillation: v_{τ} appearance (PMNS matrix test)
 - dark matter
- R&D for Gen2

New OMs: mDOM and D-Egg (Gen2 TDR (2023))

IceCube-Gen2, a multi instrument experiment: The optical detector

Location	Amundsen-Scott	SURFACE DETECTOF
	(90°S, 0°E)	
Max. Depth	2689 m	00 rate descar assession
Nb. Strings [OM]	93IC+120 [+9600]	
Dist. inter- Str [OM]	120/240m [17m]	
Strings height	1345 m	
Instrumented Vol.	7.9 km ³	<u>Multi-ins</u>
Energy range	5 TeV - >10 PeV	Optical $+$ s
Trk angular resol.	0.3°	+ ice show
		Deview
usigns	ade-1	sign Ro
1st de-	TOR UPERF. D	ν- Γ

2025

2020

2015

Projected sensitivities

Projected 90% CL Upper Limit sensitivity (Full-line) and Discovery Potential (Dashed) to v Point Sources for TRIDENT, compared with IceCube, IceCube-Gen2 and KM3NeT/ARCA. Assumed fluxes are, Left: E^{-2} , E>10 TeV; Right: E^{-3} , E>1 TeV

(Wenlian, NIM-A 1056 (2023)

Projected P.S. Detection Horizon (assumed E^{-2} flux) of IceCube-Gen2 and KM3NeT/ARCA

Ambrosone, Phys. Rev. D 109 (2024)

Contents

Introduction

- 2 The Water Cherenkov Neutrino Telescopes
 - Generalities on Water Cherenkov NTs
 - Experiments foreseen in the coming decades

3 Air shower (non radio) detection

- Air shower imaging detectors
- Surface Detector arrays

4 Radio detection of shower

- Air shower radio detection
- Radio detection in the ice

Conclusions

22

Detection above the PeV: Neutrino induced shower

UHE cascades from eart-skimming neutrinos

Chiche & Decoene, Moriond 2022

Cherenkov and Fluorescence Air shower imaging detectors

Cherenkov detectors

Particles moving at relativistic speed in the air

 \implies Cherenkov light

Technology from gamma-ray astronomy (like HESS / CTA)

Fluorescence detectors

Charged particles moving in a gas \implies lonisation and Excitation \rightarrow fluorescence lights (U.V., visible) along the track. Efficient energy and direction reco.

Technology used in CRs experiments (like Auger)

Some pros and cons:

- + Effective volume
- Require obscurity: duty cycle limited (e.g. moonless night);
- Light yield depends on atmospheric conditions.

24

Project of Cherenkov and Fluorescence detectors

Ground based experiments

- Ashra-NTA ($_{PoS(ICRC2021)970}$) $E_{v_{\tau}}$ PeV - EeV, Hawai 2002 Proposal, 2008 Ashra-1, 2013 Lol
- Trinity (PoS(ICRC2023)1170): $E_{v_{\tau}}$ PeV 10 EeV
 - 2023: Demonstrator (Utah, US); 2025: construction of 1st telescope.

Space based experiments

- <u>POEMMA</u> (PoS(ICRC2023)1159, CL+FL): $E_{v_r} > 20$ PeV. 2 spacecraft, 5y mission. 2026: Balloon mission
- <u>JEM-EUSO</u> (PoS(ICRC2023)208). 2013: ground det., 2019: ISS det., 2023: EUSO-SPB2 Balloon.
- <u>NUSES</u> (PoS(ICRC2023)391, CL): Spacecraft launch: end 2025

V. Cecchini (IFIC Valencia)

Surface Detector for particles detection

Principle: Detect particles of a cascade induced by earth skimming v_{τ} , like in CRs searches (e.g. Auger). NB: Can be combined with Fluorescence imaging too.

TAMBO: Tau Air-Shower Mountain-Based Observatory (TAMBO, 2002.06475 (2023))

- *E*(*ν*_τ): 1-100 PeV
- Location: Colca Canyon (Peruvian Andes)
- Dates: 2020: White Paper; 2023: Prototype construction
- Technology: array of water Cherenkov and/or plastic scintillator detectors

Credits TAMBO

NB: AugerPrime (~2030) sensible to earth-skimming $v_{\tau} > \text{EeV}$ (Ackermann, J. HE Astrophy (2022).

Contents

Introduction

- 2 The Water Cherenkov Neutrino Telescopes
 - Generalities on Water Cherenkov NTs
 - Experiments foreseen in the coming decades
- 3 Air shower (non radio) detection
 - Air shower imaging detectors
 - Surface Detector arrays

Radio detection of shower

- Air shower radio detection
- Radio detection in the ice

Conclusions

27

Radio detection of shower

Geomagnetic Radiation

Magnetic field deflect e^{\pm} in opposites directions + particle number vary \implies current varying in time \rightarrow radio signal

 \rightarrow Dominant in the air

Air shower properties

Longitudinal dev.: $\mathcal{O}(km)$ Lateral extension: $\mathcal{O}(m)$ Radio attenuation length: ~1000km Coherence band: [MHz : GHz]

Large attenuation lengths \implies Large effective volumes.

Askaryan Radiation

Negative charge excess at shower front + positively charged plasma behind \implies moving dipole \rightarrow radio signal

 \rightarrow Dominant in dense medium (ice)

Ice shower properties

Longitudinal dev.: $\mathcal{O}(m)$ Lateral extension: $\mathcal{O}(cm)$ Radio attenuation length: ~1km Coherence band: [100 MHz : GHz] $\underline{\land}$ Radio coherent cone aperture [40°:60°]

V. Cecchini (IFIC Valencia)

Air shower radio detection with ground array

GRAND \$11433-018-9385-7 (2019) Giant Radio Array for Neutrino Detection

 E_v >50 PeV, Autonomous radio detection Proto: GP300 (Gobi desert), Nançay, @Auger Future steps: GRAND10k (2028) Target: GRAND200k (= 20 sites of 10k).

BEACON 2022.167889, NIM-A (2022) Beam forming Elevated Array for COsmic Neutrinos

 E_{v} >30 PeV, Interferometry @30-80 MHz from top of mountain (increased FoV)

Now: 8 antenna prototype in California

Target: 100 antennas

Credits **BEACON**

TAROGE PoS(ICRC2023)1126

Self-triggered antenna array, E_{ν} >100 PeV, Mt. Melbourne, Antartica. Prototypes in 2020, 2023

∃ Proposal to use a forest as antenna Prohira, 2401.14454 (2024)

V. Cecchini (IFIC Valencia)

Neutrino telescopes review

MG17 Pescara, 11/07/2024

Radio detection from air and space

PUEO: Payload for Ultrahigh Energy Observations (PUEO, J.Inst 16 (2021)).

Long-duration balloon experiment over Antarctic 2 instruments: [300-1200] MHz (main); [50-300] MHz (larger eff. area). \rightarrow 30 days flight planned for 2025-2026 austral summer.

100 PeV energy threshold, $\times 100$ ANITA I-IV integrated sensitivity. Sensible to:

Earth-skimming tau neutrinos;

Neutrinos interacting in the ice;

Geomagnetic radio emission from UHECRs (stratosphere included).

NB: \exists also project to detect v interaction in moon regolith.

Credits PUEO

Radio detection in the ice

- <u>RNO-G</u>: Radio Neutrino Astronomy in Greenland (Pos(EPS-HEP2023)076). Energy threshold 50 PeV.
- Design based on ARIANNA and ARA:
 - Sub surface antenna (-3 m)
 - Deep antenna (-100 m)
 - 7 stations deployed before summer 2024.
 - Target: 35 stations (1.25 km spread) by 2027 $\rightarrow~40~\text{km}^2.$

ARA, ~150-200 m

<u>ICGen2-Radio</u>. E_{ν} [10 PeV : EeV]. ~400 km², ~200 sub-surface + ~150 hybrid (RNO-G like)

Radar echoes detection

Principles: Radio wave are reflected on the ionization trail left by ice showers. Send radio signal with transmitter, detect echoes with receiver \rightarrow **Active method** for detecting UHE neutrinos.

<u>RET-N</u>: Radar Echo Telescope (Pos(ICRC2023)1135), E \in [PeV : EeV]

2018: Concept validation by T-576 experiment. 2023: RET-CR (Cosmic Ray) pathfinder deployed in Greenland: Tiggered on CRs by scintillator panels

Target: Self-triggered station, comprising

- (a) a central phased-array radio transmitter;
- (b) an array of receivers (hundreds meters baseline), buried ~ 1.5 km deep.

Credits RET-CR

32

Contents

Introduction

- 2 The Water Cherenkov Neutrino Telescopes
 - Generalities on Water Cherenkov NTs
 - Experiments foreseen in the coming decades
- 3 Air shower (non radio) detection
 - Air shower imaging detectors
 - Surface Detector arrays
- 4 Radio detection of shower
 - Air shower radio detection
 - Radio detection in the ice

Conclusions

33

Takes away messages and conclusion

Various kind of detectors coming, some oncoming, other in project:

- Order of magnitude increased sensitivity.
- Diverse Neutrino Astronomy Targets \implies different (but complementary) detectors.
- Various techniques: reduce holds in the racket.
- Wider energy range (and potential sources) covered.
- Powerful astronomy capabilities by combining results (minimize background hypothesis)
- → **Needs of collaboration** and tools for real-time data combination.
- Universe opaque at PeV/EeV: Only NTs can do astronomy at UHE.

Low to medium energies not addressed here, but a lot of physics can be done there too, *e.g*: SN detection, mass hierarchy, dark matter, NSI, ...

New era begins, bright future is ahead of us: STAY TUNED!

GRAZIE A LEI!

Some references used to prepare this presentation:

Decoene, PoS (ICRC2023) 026

Palladino, Spurio and Vissani, Universe (2020).

Ackermann et al., J. High Energy Astrophysics (2022).

S. Navas et al. (PDG), Phys. Rev. D 110, 030001 (2024).

Guepin, Kotera and Oikonomou, Nat. Rev. Phys. (2022).

Note: Pictures without close-by credits comes from paper referenced in each slide.

BACKUP

What to expect for the highest energies?

Expected differential 90% C.L. sensitivities for a variety of experiments to an all-flavor diffuse neutrino flux computed in decade-wide energy bins and assuming a ten-year integration. From Ackermann (2022).

Opaque Universe

From Multimessenger Astronomy, Bartos and Kowalski

Radio/microwave image, credit: ESA/DLR/Ducris, CC BY-SA 3.0 IGO. Infrared/optical image, credit: Axel Mellinger, www.milkywaysky.com. X-rays image, credit: X-Ray Group at the Max-Planck-Institut fur extraterrestrische Physik (MPE). Gamma-rays image, credit: NASA/DOE/Fermi LAT Collaboration. Neutrinos and cosmic-rays images, credit: IceCube.