17th Marcel Grossmann Meeting - 11/07/2024 - Pescara

Searches for Diffuse and Galactic neutrino emissions with ANTARES telescope

Théophile Cartraud - APC (Paris)

on behalf of ANTARES/KM3NeT collaboration

Plan

- ANTARES telescope and dataset
- Diffuse analysis:
 - final dataset (2007-2022)
 - ANTARES Collaboration, A. Albert et al. astro-ph.HE: 2407.00328
- Galactic Ridge analysis:
 - o dataset (2007-2020)
 - ANTARES Collaboration, A. Albert et al. Phys.Lett.B 841 (2023)
- Galactic Template analysis
 - final dataset (2007-2022)
 - ANTARES Collaboration and KRAγ group, T. Cartraud et al. PoS ICRC2023 (2023) 1084 *

* previously shown limits will be updated in a upcoming publication to include the full dataset and improvements in the method.

ANTARES telescope

- 2007-2022.
- location: Mediterranean Sea, 40 km off-shore Toulon, France
- depth: 2475 m.
- 12 lines of 350m made of 25 triplets of optical modules.
- track and shower event topologies.

Final dataset

4541 days of effective livetime.

- Track channel
 - **3392** neutrino events
 - pure sample (0.3% of atm. muons)

• Shower channel

- **187** events
- o above 1 TeV
- pure sample (>95% neutrinos)

• Low-energy Shower channel

- independent from the other channels
- **219** events
- pure sample (> 99% neutrinos)

Final datasets

Diffuse analysis

Diffuse cosmic flux:

- from unresolved neutrino sources
- from high-energy CRs interacting while they propagate
- follows a power-law in energy of spectral index $\gamma \in [2.0, 2.4]$

Analysis method:

- bayesian analysis
- Poisson likelihood counting method
- Looking at the **energy spectrum**, independently from the direction.
- FoV in declination: from -90° to 53°
- Hypothesis: **Unbroken power-law**, scan $\gamma \in [1.5, 3.5]$

Statistical analyses

Same framework for **Diffuse** and **Galactic Ridge**

- bayesian analysis
- Poisson likelihood counting method

Other framework for Galactic Templates

- frequentist analysis
- unbinned maximum extended likelihood method

Bayesian framework: Poisson likelihood

Bayesian framework: Poisson likelihood

Bayesian framework

$$\mathcal{L}\left(N_{i}; S_{i}^{(\gamma)}, B_{i}, \phi_{0}\right) = \prod_{k} \prod_{i=1}^{N_{k}} \mathcal{P}(N_{i}, B_{i} + \phi_{0}S_{i}^{(\gamma)})$$

$$marginalized posterior distribution$$

$$stat. \& syst. uncertainties$$

$$P(\gamma, \phi_{0}) = \int \mathcal{L}\left(N_{i}; S_{i}^{(\gamma)}, B_{i}, \phi_{0}\right) \times \overline{\pi(B_{i}) \times \pi(S_{i}^{(\gamma)})} \times \overline{\pi(\phi_{0}, \gamma)} \times \prod dB_{i} dS_{i}^{(\gamma)}$$

$$gaussian priors \quad \text{flat priors}$$

Energy distribution for tracks

Energy distribution for showers

Energy distribution for low-energy showers

Posterior distribution

γ	$\phi_{ m astro}^{68\%}$	$\phi_{ m astro}^{95\%}$	$\phi_{ m astro}^{99.7\%}$	Energy range
				$[{ m TeV}]$
3.2	0.51	0.68	0.94	1.8-63
3.0	0.82	1.03	1.49	2.0 - 100
2.8	0.98	1.49	2.06	2.2-180
2.6	0.98	1.80	2.61	2.5-450
2.4	0.94	1.80	2.86	2.8 - 1000
2.2	0.78	1.64	2.73	8 - 2800
2.0	0.59	1.24	2.17	30 - 8000
1.8	0.37	0.82	1.49	80 - 20000

ANTARES Collaboration, A. Albert et al. - astro-ph.HE: 2407.00328

Posterior confidence intervals (CIs)

ANTARES Collaboration, A. Albert et al. - astro-ph.HE: 2407.00328

Posterior CIs with low-energy cuts

- absence of significant excess.
- extension of IceCube's spectra below 10 TeV excluded at 99.7%.
- cut-off needed in the 10 30 TeV region.

Departure from the simple power-law

Galactic Ridge

Galactic Ridge

ridge region: || < 30°, |b| < 2° for tracks

Analysis:

same framework as for the diffuse analysis
signal evaluated in an ON region
background evaluated with data in an OFF region

tracks and showers from 2007 to 2020

Galactic Ridge

ANTARES Collaboration, A. Albert et al. - Phys.Lett.B 841 (2023)

Observed amount of events in the Galactic Ridge

	Track	Shower
Events observed	21	13
Expected Background	11.7 ± 0.6	11.2 ± 0.9
Background Rejection significance	98% (2.2σ)	56% (0.2σ)

ANTARES Collaboration, A. Albert et al. - Phys.Lett.B 841 (2023)

Posterior distribution

Background hypothesis rejected at a 96% confidence level.

Results

ANTARES Collaboration, A. Albert et al. - Phys.Lett.B 841 (2023)

Comparison with IceCube

ANTARES Collaboration, M. Lamoureux et al. - PoS ICRC2023 (2023) 1103

Template Analysis

- likelihood analysis with a frequentist framework
- Fit the flux predicted by several models of galactic neutrino emissions
- test different models
 - Fermi-LAT Galprop π0 [1]
 - KRAγ 5PeV (2015) [2]
 - KRAY max and min (2023) [3]
 - CENTAURS diff. B1 + 40% of unresolved contribution) [4]
 - CRINGE (diff. + unresolved contribution) [5]

[1] Ackermann, M. et al. ApJ 750, 3 (2012).
 [2] Gaggero, D. et al. ApJL 815, L25 (2015).
 [3] De La Torre Luque, P. et al. Front. Astron. Space Sci. 9 (2022).
 [4] Vecchiotti, V. et al. ApJL 956 L44 (2023).
 [5] Schwefer, G. et al. ApJ 949, 16 (2023).

Models: predicted neutrino energy spectrum

Models: flux in along galactic longitude

The challenge

number of events per channel

$$\mathcal{L}_{H_1}(r, \boldsymbol{\mu_b}) = \sum_{i=1}^m \left\{ \sum_{j=1}^{n_i} \log \left[r \mu_{\text{model}}^i s_j^i + \mu_b^i b_j^i \right] - r \mu_{\text{model}}^i - \mu_b^i \right\}$$

number of channels: tracks, showers, etc.

$$\mathcal{L}_{H_0}(\boldsymbol{\mu_b}) = \sum_{i=1}^{m} \left\{ \sum_{j=1}^{n_i} \log \left[\mu_b^i b_j^i \right] - \mu_b^i \right\}$$

$$\mathcal{L}_{H_1}(r, \boldsymbol{\mu_b}) = \sum_{i=1}^m \left\{ \sum_{j=1}^{n_i} \log \left[r \mu_{\text{mode}}^i s_j^i + \mu_b^i b_j^i \right] - r \mu_{\text{model}}^i - \mu_b^i \right\}$$

background PDF
$$\mathcal{L}_{H_0}(\boldsymbol{\mu_b}) = \sum_{i=1}^m \left\{ \sum_{j=1}^{n_i} \log \left[\mu_b^i b_j^i \right] - \mu_b^i \right\}$$

number of background events for each channel

$$\mathcal{L}_{H_1}(r, \boldsymbol{\mu_b}) = \sum_{i=1}^m \left\{ \sum_{j=1}^{n_i} \log \left[r \mu_{\text{model}}^i s_j^i + \mu_b^i b_j^i \right] - r \mu_{\text{model}}^i - \mu_b^i \right\}$$

number of background events

$$\mathcal{L}_{H_0}(\boldsymbol{\mu_b}) = \sum_{i=1}^m \left\{ \sum_{j=1}^{n_i} \log \left[\mu_b^i b_j^i \right] - \mu_b^i \right\}$$

flux ratio

$$\mathcal{L}_{H_1}(\mathbf{r}, \boldsymbol{\mu_b}) = \sum_{i=1}^{m} \left\{ \sum_{j=1}^{n_i} \log \left[r \mu_{\text{model}}^i s_j^i + \mu_b^i b_j^i \right] - r \mu_{\text{model}}^i - \mu_b^i \right\}$$

$$\mathcal{L}_{H_0}(\boldsymbol{\mu_b}) = \sum_{i=1}^m \left\{ \sum_{j=1}^{n_i} \log \left[\mu_b^i b_j^i \right] - \mu_b^i \right\}$$

The PDFs

factorized PDFs

$$s_j^i = f_s^i(\alpha_j^i, \delta_j^i) \cdot g_s^i(E_j^i)$$
$$b_j^i = f_b^i(\delta_j^i) \cdot g_b^i(E_j^i)$$

non-factorized PDFs

$$s_j^i = f_s^i(\alpha_j^i, \delta_j^i, E_j^i)$$
$$b_j^i = f_b^i(\delta_j^i, E_j^i)$$

The PDFs

factorization:

- disentangle the degrees of freedom.
- require less statistics to build the PDF
- remove energy-position correlations

non-factorization:

- entangled degrees of freedom.
- phase space with low-statistics
- more precise detector response

$$s_j^i = f_s^i(\alpha_j^i, \delta_j^i) \cdot g_s^i(E_j^i)$$
$$b_j^i = f_b^i(\delta_j^i) \cdot g_b^i(E_j^i)$$

$$s_j^i = f_s^i(\alpha_j^i, \delta_j^i, E_j^i)$$
$$b_j^i = f_b^i(\delta_j^i, E_j^i)$$

Background PDFs*

- Uniform in α because of Earth's rotation.
- Integrated on the full range of energy.

* all following plots and examples have been obtained with the final ANTARES MC of the track-like selection

Background PDFs

- use of KDE (Kernel Density Estimation)
- $\bullet \quad \text{more statistics in every bin of energy: data} \to \mathsf{MC}$
- spatial shape vary highly energy
- cumulated spatial shape dominated by low energy events

$$s_j^i = f_s^i(\alpha_j^i, \delta_j^i) \cdot g_s^i(E_j^i)$$
$$k_j^i = f_b^i(\delta_j^i) \cdot g_b^i(E_j^i)$$

$$s_j^i = f_s^i(\alpha_j^i, \delta_j^i, E_j^i)$$
$$b_j^i = f_b^i(\delta_j^i, E_j^i)$$

From the galactic template...

...to the signal PDF

to the signal PDF

The Ridge is back !

- frequentist framework
- flux following a power-law in a masked region of the sky
- different modeling of signal/background compared to bayesian framework.

Early results

	predicted number of sig/bkg events		
Model	track	shower	
KRAγ max (2023)	9.2/3392	5.6/196	
Ridge*	8.8/3392	5.3/196	

* best-fits as in ANTARES Collaboration, A. Albert et al. - Phys.Lett.B 841 (2023)

Conclusion

Legacy analyses from ANTARES:

diffuse analysis:

- absence of significant excess.
- extension of IceCube's spectra below 10 TeV excluded at 99.7%.
- cut-off needed in the 10 30 TeV region.

 \rightarrow discrepancy from the no-break single-term power law.

galactic analysis:

- MC-driven frequentist framework able to precisely test the **ridge** and **galactic** models.
- Results will arrive soon: stay tuned !

Sensitivity for tracks: diffuse analysis

ANTARES Collaboration, A. Albert et al. - astro-ph.HE: 2407.00328

Sensitivity for showers: diffuse analysis

ANTARES Collaboration, A. Albert et al. - astro-ph.HE: 2407.00328

Sensitivity for low-energy showers: diffuse analysis

ANTARES Collaboration, A. Albert et al. - astro-ph.HE: 2407.00328