

Overview on neutrino astronomy

Marcell Grossman 17, Pescara July 7th-12th 2024

Dr. Luigi Antonio Fusco Ifusco@unisa.it

Università degli Studi di Salerno, INFN-NA Gruppo collegato di Salerno

Outline

- 1. Neutrino astronomy
- 2. Neutrino telescopes
- 3. Recent results

Cosmic protons/nuclei can interact with the medium

$$p + p \to \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, p, n, ...$$
 (1)

Astrophysical beam dump

or with ambient radiation

$$p + \gamma_{\mathcal{E}} \to \Delta^+ \quad \to \quad \pi^0 + p$$
 (2)

$$\rightarrow \pi^+ + n \tag{3}$$

Photoproduction via Δ resonance

Astrophysical beam dump (pp process)

$$p + p \rightarrow \pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}, p, n, ...$$

$$\pi^{+} \rightarrow \nu_{\mu} + \mu^{+}$$

$$\hookrightarrow \mu^{+} \rightarrow \bar{\nu}_{\mu} + \nu_{e} + e^{+}$$
(4)

$$\pi^{-} \rightarrow \bar{\nu}_{\mu} + \mu^{-}$$

$$\hookrightarrow \mu^{-} \rightarrow \nu_{\mu} + \bar{\nu}_{e} + e^{-}$$
(5)

Photoproduction via Δ **resonance** ($p\gamma$ process)

$$p + \gamma \varepsilon \to \Delta^+ \to \pi^0 + p$$

 $\to \pi^+ + n$

$$\pi^{+} \rightarrow \nu_{\mu} + \mu^{+}$$

$$\hookrightarrow \mu^{+} \rightarrow \bar{\nu}_{\mu} + \nu_{e} + e^{+}$$
(6)

$$n \rightarrow p + e^- + \nu_e \tag{7}$$

Why neutrinos?

Neutrinos from sources

- In pp emission
 - Neutrinos will follow the same spectrum as the primary CR
 - Neutrinos will carry about 1/2 of the energy of photons (\sim 5% of the primary)
 - Neutrinos will be roughly 2 times more abundant than photons
- For the $p\gamma$ processes, the outcome will be more dependent on the nature of the radiation field.

Neutrino sources search

- When we search for a neutrino signal, this is buried under background events
- Different strategies to search for it:
 - Direction
 - Energy
 - Time

Diffuse fluxes

- The ensemble of all sources which are too faint to be detected individually will produce a diffuse background (see γ and X-ray backgrounds)
- We know this is a guaranteed flux, since high-energy CRs will interact somewhere
- Of particular interest in our Galaxy

Diffuse flux searches

- Cosmic signal will pop out at the highest energies
- Many possibile underlying sources
- Energy estimation is crucial

- High-energy cosmic neutrino fluxes will be low
- Neutrino cross section with matter is very low
- ⇒ Detection will be difficult

And we want to measure their direction and energy accurately

- Collect Cherenkov photons from particles coming out of the neutrino interaction
- km³ volumes of transparent media
- At large depth (2–3 km)

Overview on neutrino astronomy

Overview on neutrino astronomy

Overview on neutrino astronomy

- Ice is more transparent but light scatters a lot
- Water absorbs more but light is almost always direct

The early days – DUMAND

4800 m depth at Hawaii shore

The early days - Baikal

The early days – AMANDA

The early days – In the Mediterranean

NESTOR

IceCube (2006 - ongoing)

ANTARES (2007 - 2022)

KM3NeT (2016 - ongoing)

GVD (2017 - ongoing)

7 clusters working now, more to come V_{inst}~0.3km³

Diffuse fluxes

Diffuse fluxes

- Comparing the constrained parameter space
- How to interpret these tensions?

Milky Way

- CRs fill the Galaxy
- ISM fills the Galaxy
 - \rightarrow CR collisions will produce $\gamma {\rm s}$ and $\nu {\rm s}$

We have a guaranteed component of neutrinos in the Southern Sky from the presence of the Galactic Plane

Milky Way

- June 29th 2023: IceCube announced the detection of neutrinos from the Milky Way
- Selected cascade events using machine learning techniques to improve the purity of the sample

Point sources

Point sources

Multi-messenger

IceCube detected a 270 TeV muon on September 22, 2017 at 20:54:30.43 UTC

Multi-messenger

Fermi-LAT and MAGIC reported high-energy emissions in coincidence with the Blazar

And much more

- This is only a partial overview, there's a lot of stuff going on
 - Not only astronomy and astrophysics, but also beyond standard model physics, cosmic rays, environmental science
- The role of ANTARES in this history will be covered in detail in the next talks

Backup slides

- Once the veto is applied, select high-energy events
- As they "start" inside the detector, with no signal outside, these are called High Energy Starting Events (HESE)
- These are mainly showering events → Above 30-50 TeV

First discovery of cosmic neutrinos, in 2013, by IceCube

IceCube, 7.5 years of data, HESE sample

- IceCube HESE analysis
- Mainly electron neutrinos from the Southern Sky

Flux parameters:

$$\begin{array}{c|c} \gamma_{\rm fit} & \Phi_{\rm fit}(100 \; {\rm TeV}) \\ \hline 10^{-18} [{\rm d.f.u}] \\ \hline 2.87 \pm 0.2 & 1.89 \pm 0.52 \end{array}$$

d.f.u = diffuse flux units: (GeV cm² s sr)⁻¹

To complement the HESE, a more standard search from IceCube looks at upward-going tracks

- Events from the Northern Sky
- At higher energies than the HESE events (> 100-200 TeV)

- IceCube upgoing tracks analysis
- Mainly muons from the Northern Sky

Flux parameters:

$\gamma_{ m fit}$	$\Phi_{\rm fit}(100~{ m TeV})$
	10 ⁻¹⁸ [d.f.u]
2.37 ± 0.09	1.44 ± 0.25

- IceCube cascades analysis
- Mainly electron and tau neutrinos

Flux parameters:

$\gamma_{ m fit}$	$\Phi_{ m fit}(100~{ m TeV}) \ 10^{-18} [{ m d.f.u}]$
2.58 ± 0.07	1.66 ± 0.25

• Spectral features?

Milky Way

Neutrino sources

NGC 1068 (M77) is the brightest and one of the closest and best-studied type 2 Seyfert galaxies

 $\mbox{AGN} + \mbox{intense starburst activity}$

KM3NeT (2016 - ongoing)

KM3NeT-ARCA

- Off-shore Sicily, 3.5 km depth
- Target: neutrino astronomy
 → high-energy neutrinos
- 90 m DU horizontal spacing,
 36 m DOM vertical spacing
- 230 DUs target, for 1 km³
- Currently: 28 DUs working

KM3NeT (2016 - ongoing)

KM3NeT-ORCA

- Close to the ANTARES site
- Target: neutrino oscillations
 → low energy threshold
- 20 m DU horizontal spacing,
 9 m DOM vertical spacing
- 115 DUs target, for 0.0067 km³
- Currently: 21 DUs working