

The Epoch of Reionisation through the low-frequency radio lens

Adélie Gorce

08/07/2024

OVERVIEW

- I. WHY is the 21cm signal interesting?
- II. HOW do we measure it?
- III. WHEN will we observe it?

Why?

Reionisation & Cosmic Dawn

The chronology & topology of reionisation can shed light on the nature of the first stars, the formation of galaxies, the density of the IGM...

Adélie Gorce

Adélie Gorce

So what do (we think) we know so far?

- Starts slowly around redshift 15-20
- Reaches 50% ionisation around z = 7
- Ends z < 6
- Lasts for 0.5-1Gy

So what do (we think) we know so far?

Not that much...

How can we do better?

1. By combining data sets

See, e.g., Muñoz+2024

So what do (we think) we know so far?

Not that much...

How can we do better?

- 1. By combining data sets
- 2. By working on our theoretical understanding of reionisation

With simulations...

Or analytical models...

See, e.g., Furlanetto+2004, Gorce+2020, Schneider+2020, Mirocha+2022, Muñoz 2023, Georgiev+2024...

So what do (we think) we know so far?

Not that much...

How can we do better?

- 1. By combining data sets
- 2. By working on our theoretical understanding of reionisation
- 3. By working on our understanding of observations themselves

Why? The 21cm signal Electron NUCLEUS $\lambda = 21 \text{ cm}$ Redshifted to radio Hyperfine frequencies transition $-\frac{T_{\rm CMB}}{T_{\rm S}}\bigg]$ $\delta T_{\rm b} = T_0(z) x_{\rm H}$ Neutral H fraction **Baryon density**

Adélie Gorce

The 21cm signal

Why is the 21cm signal interesting?

- It could be measured at any redshift
- It contains information about
 - the global history of reionisation
 - the properties of the early Universe and galaxies

For different minimal halo mass required for the hosted galaxy to produce ionising photons:

Adélie Gorce

Why?

The 21cm signal

Why is the 21cm signal interesting?

- It could be measured at any redshift
- It contains information about
 - the global history of reionisation
 - the properties of the early Universe and galaxies
- Its different observables are complementary

Adélie Gorce

Why?

Why?

The 21cm signal

Why is the 21cm signal interesting?

- It could be measured at any redshift
- It contains information about
 - the global history of reionisation
 - the properties of the early Universe and galaxies
- And a lot more
 - Cosmology
 - Cosmic strings
 - Beyond the standard model
 - Cosmic heating
 - ...

Status of high-redshift 21cm observations

How?

The 21cm signal

How? Global experiments

SARAS results

No evidence of the signal in the SARAS data Systematic-related origin of the EDGES signal: rules out best-fit at 95%

4 Smaller bandwidth

The 21cm signal

How? Interferometers

Radio interferometers around the world

A world-wide effort...

Interferometry 101

Interferometers measure visibilities i.e. Fourier modes on the sky

An estimator of the power spectrum is built directly from the visibilities: $\hat{P}(\mathbf{k}) \propto \left\langle \left| \widetilde{V}_{ij}(\nu) \right|^2 \right\rangle$

Interferometry 101

Interferometers measure visibilities i.e. Fourier modes on the sky

$$V_{ij}(\nu) = \int B_{ij}(\hat{\mathbf{r}},\nu) I(\hat{\mathbf{r}},\nu) \exp\left[-2\pi i \frac{\nu}{c} \mathbf{b}_{ij} \cdot \hat{\mathbf{r}}\right] d\Omega$$

An estimator of the power spectrum is built directly from the visibilities: $\widehat{P}(\mathbf{k}) \propto \left\langle \left| \widetilde{V}_{ij}(\nu) \right|^2 \right\rangle$

- Dense arrays measure large-scale fluctuations (e.g. EDGES' "table")
- Wide arrays measure small-scale fluctuations (e.g. HERA)

How? Interferometers

Current upper limits on the power spectrum

... which has only led to upper limits so far.

Barry+2022

The 21cm signal

How? Inteferometers

Why intensity mapping?

- SKA will measure maps of the brightness 0 temperature of the 21cm in the IGM
- These maps give access to information about galaxies Ο washed out in large-scale observations:

*δT*_b [mK]

21cm intensity map (21CMFAST simulation)

SKAO

How? Interferometers

Why intensity mapping?

- SKA will measure maps of the brightness temperature of the 21cm in the IGM
- These maps give access to information about galaxies washed but in large-scale observations
- Effort in developing efficient tools to analyse these datasets to
 - Constrain reionisation and galaxy properties
 - Tackle huge data volumes
 - Complement PS analyses (ex: non-Gaussianity)

21cm intensity map (21CMFAST simulation)

Gorce & Pritchard 2019

July 8, 2024

SKAO

How? Interferometers

Why intensity mapping?

- SKA will measure maps of the brightness temperature of the 21cm in the IGM
- These maps give access to information about galaxies washed out in large-scale observations
- Effort in developing efficient tools to analyse these datasets to
 - Constrain reionisation and galaxy properties
 - Tackle huge data volumes
 - Complement PS analyses
- Solutions (non-exhaustive list):
 - ★ Minkowski functionals & topology (Yoshiura+2016; Elbers & v.d. Weygaert 2017; Chen+2018; Giri+2020; Thélie+2022)

SKAO

- ★ Higher order statistics & bispectrum (e.g., Watkinson+2019; Gorce & Pritchard 2019, Majumdar+2020, Hutter+2020)
- ★ Al techniques (e.g., Chardin+2019, Bianco+2021, Neutsch+2022)
- ★ Scattering transforms (Greig+2022, Hothi+2023, Prelogović+2024)
- ★ One-point statistics (Mellema+2006; Gorce+2020; Kittiwisit+2018, 2022)

21cm intensity map (21CMFAST simulation)

WHEN?

What is standing between us and detection

Observing the 21cm signal

What we're doing:

Looking for the signal emitted by neutral hydrogen over 13by ago.

Why is it difficult?

Problem: RFI

Most of the target frequency band is polluted by human emission: aviation communications, FM radio, radars, ... these are called **radio frequency interference (RFI)**

Even the faintest outside signal is measured by our extremely sensitive telescopes \rightarrow limits the amount of data we can analyse

When? Data volumes

Problem: Data volumes

Interferometers gather huge data volumes.

For one season of HERA:

- 160 nights
- 8hr night
- 1536 channels (frequencies)
- Every 10.7 s
- 2 antenna polarisations
- 350 antennas = 122 150 baselines
- = 926 078 803 738 measurements (or 170TB of data)

Some of this raw data must be processed *on-site* but without producing RFI.

When? Foregrounds

Problem: Foregrounds

Extremely bright foregrounds lie between the first stars and us and dominate the observed sky

- Amplitude of the cosmological signal = 10 mK
- Amplitude of the foregrounds = 1 000 to 10 000 mK

Figure by Vibor Jelic

Problem: Foregrounds

Extremely bright foregrounds lie between the first stars and us and dominate the observed sky. All foreground treatment methods rely on the assumption that *foregrounds are spectrally smooth*

- Foreground removal (e.g., Chapman+2013, Mertens+2020)
- Foreground avoidance (e.g., Parsons+2012, Liu+2014)

[deg]

0

Frequency [MHz]

When? Foregrounds

Problem: Foregrounds

Extremely bright foregrounds lie between the first stars and us and dominate the observed sky. All foreground treatment methods rely on the assumption that *foregrounds are spectrally smooth*

- Foreground removal (e.g., Chapman+2013, Mertens+2020)
- Foreground avoidance (e.g., Parsons+2012, Liu+2014)

Cylindrical power spectrum

When? Foregrounds

Problem: Foregrounds

Extremely bright foregrounds lie between the first stars and us and dominate the observed sky. All foreground treatment methods rely on the assumption that *foregrounds are spectrally smooth*

- Foreground removal (e.g., Chapman+2013, Mertens+2020)
- Foreground avoidance (e.g., Parsons+2012, Liu+2014)

Cylindrical power spectrum

Problem: Foregrounds

Extremely bright foregrounds lie between the first stars and us and dominate the observed sky. All foreground treatment methods rely on the assumption that *foregrounds are spectrally smooth* but the chromaticity of the instrument introduces spectral structure and biases.

When? Systematics

Problem: (Instrumental) systematics

Many unknown systematics need to be understood and characterised:

- Cross-coupling between antennas
- Cable reflections
- Ionosphere
- ...

Ex: Chromaticity & window functions in Fourier space

Gorce & the HERA collab+2023

When? Miscellanous

Problem: Mice!!!

Conclusions

Why? Observing the high-redshift 21cm signal will tell us about the timing and morphology of reionisation and, in turn, about the physical properties of the first galaxies and the early Universe.

How? Collaborating and sharing our experience with different experiments around the world.

When?

- 2018: Claimed detection of the global 21cm signal at z = 17
- Up to now: Upper limits on the 21cm power spectrum
- Detection when the major challenges (foregrounds and instrumental systematics) have been overcome.

Keep an eye out, we will get there!

Thank you!