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Grawtatlonal waves detection problem

| Signal in the data
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https://www.sciencedirect.com/science/article/pii/S0020025518301634

Work presented here

v Classification of segments of data
v .TiIme-series representation

Al\n
v Training on real data

Time series

\N\ /\/\ /\ /‘/\ M!\ j\ f\ ,AV /\VU[\/\V \/U\\} WAVAMVAVN\VMV/\\/AVAAVA /\V /\VVA/\

Amplitude [strain]

v Focus on single detector periods
v Analysis of L1 single detector periods in O1
» Previous works aim mainly at multi-detector analysis

v Paper available at: A Trovato et al 2024 Class. Quantum Grav. 41
125003
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https://iopscience.iop.org/article/10.1088/1361-6382/ad40f0
https://iopscience.iop.org/article/10.1088/1361-6382/ad40f0

Single-detector time

@ Glitch impact on sensitivity is larger during single-detector periods as

coincidence with additional detector is impossible. Can machine learning help?

@ Single-detector time:

v ~2.7 months in O1+02; ~1.6 months In O3: ~ 2.4 months in O4a

O3
04/2019 -> 03/2020 (~1 year)

H1-L1-V1: 47.4 %
H1l-L1l: 14.8 %
H1-V1: 9.4 %
L1-V1: 11.8 %
H1l: 3.0 %

L1l: 3.0 %
V1: 7.4 %

None: 3.3 %

09/2015 -> 01/2016 (~4 months)

/ LIGO network duty factor

01 Double interferometer l._)\-}

Single iterferometer ..".J'. 1/

B No interferometer (23.8%]

g, 11/2016 -> 08/2017 (~9 months)

W, 05/2023 -> 01/2024 (~ 8 months)
LIGO network duty factor Network duty factor

[1368975618-1389456018]
. Double interferometer [53.4%]

B Single interferometer [29.7%]
M No interferometer [16.6%]

B Double interferometer :l"' },

Single interferometer [29.5%

B No interferometer :'.-_)l 1'.'.';




Training data: 3 classes

Segments of glitches and “almost Gaussian” noise data samples from the one month of LIGO O1 run
(downsampled to 2048 Hz), whitened by the amplitude spectral density of the noise.

Noise from GPS 1132550972.487

2.5 1

Real detector noise from real data
when nor glitches nor signals nor
iInjections are present

0.0 -

-2.5 -

-5.0 -

0.0 0.2 0.4 0.6 0.8 1.0

Added signal with SNR=20
' -m m signal+nhoise

®  signal

Real detector noise (selected as
noise class) + BBH injections

Data containing glitches
(glitches inferred from 2+ detector
periods with gravity spy and cWB)

.............
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NN archltectures

@ CNN : Convolutional Neural Network Inut S corios data

v Slmllar choice to prevrous works | s '

° TCN Temporal Convolutlonal Network

Neural network

@ |IT 7 Inception Time f ~ '

Probabllrty for each of the three

X 2 Modern architectures based on CNN but classes

concelved for time series classification

* Applied to this problem for the first time

@ After a rough optimisation of the hyperparameters of each model, we fixed
them and trained and tested the same model 10 times, choosing the model
with the highest ROC (see next slides)

A. Trovato, SISSA, 26th June 2024 7



ROC curves
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Classification efficiency vs SNR for fixed FAR

Threshold FAR=10"" s~ 1

Only the best
model out of the
10 repetitions
considered for
each architecture

>
O
-
2
—
4=
v
c
e
el
©
O
=
M
n)
©
O

e TCN and IT perform similarly and outperform CNN
o Efficiency better than 0.5 for SNR>9 at this level of FAR
(1 alarm per 10° s = 0.864 alarms per day)
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Trigger selection cut

@ We focus on the stricter cut that we can consider: Ps=1 at machine
precision (single-precision floating-point format)

@ With this cut we have:

CNN TCN IT
Noise+glitch samples with Ps=1 0 1 2
Equivalent FAR [s1] <1.7x106 1.7 x106/3.4 x 106
Equivalent FAR in days < 1/(7 days) |1/(7 days) 1/(3 days)
Signal classification efficiency 65% 716% 6%

@ The FAR level reached is compatible with our initial goal: 2 false alarms
per day => FAR =2.3 X 10> s-1

A. Trovato, SISSA, 26th June 2024



Analysis of the remaining 3 months of Ot

» We applied the 3 networks to the remaining 3 months of L1 in O1 excluding the 1 month period
already used for training and testing and know injections

* Periods around known GW detections have been examined separately

Classifier [T GW150914 identified with Ps =1 |

. GW151012 was detected by
| i { LVKin L1 with a SNR~6 (our |
N Ps =1 > Ao | training set has a minimum of 8) |
e Po=1-106 -> 426 Fie S

‘ Ps:O -> /120 "’

Blips |GW151226 has masses not in the
GW150914 | | rangeused inour training set |

GW151012
GW151226

Selected triggers
I I | 99
3 4 4
A= —logi1o(1 — Ps)

5

A. Trovato, SISSA, 26th June 2024
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Triggers found in the remaining 3 months of Ot

@ Selection cut: Ps=1

CNN TCN IT
Samples with Ps=1 in single-det time 2 14 2
Samples with Ps=1 in double-det time 2 01" {

@ Only one event common to the three analyses: L1-only at
GPS=1135945474.0 (2016-01-04 12:24:17 UTC)
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Is it a Blip?

« Gravity Spy finds a Blip at 1135945474.373

* [n general the population of Blips compatible with background: Jan 4 outlier for this population

- Blip example
Classifier IT

=
(W]

Normalized energy

.-r::-.
T
St
>
J
-
v
-
o
u
L

Blips

GW150914
GW151012
GW151226

-0.125 0.0 0.125
Time (s)

Jan 4, 2016

—

Frequency [HZ]

3 5

4
—logi10(1 — Ps)

0.336 0344 0352 036 0368 0376 0384 0392 04 0408
Time [seconds] from 2016-01-04 12:24:17 UTC (1135945474.0)
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Has it an astrophysical origin?

@ Checks that the transient signal is compatible with a GW waveform model

v Bayesian parameter estimation: Bilby

v -Independent check: denoising convolutional neural network by Bacon et al 2023
Mach. | earn.: Sci. Technol. 4 035024

Whitened Strain

0.25
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https://iopscience.iop.org/article/10.3847/1538-4365/ab06fc
https://iopscience.iop.org/article/10.1088/2632-2153/acd90f
https://iopscience.iop.org/article/10.1088/2632-2153/acd90f

luminosity distance

1

eff

Corner plot

GPS = 1135945474.373+0076

SNR = 11.34%

M = 30.181%3M

my = 507504 0

my = 24.475°2 M,

e 0.4
Heff = 0061_()5

Consistent with BBH population
observed so far




Conclusion

@ Architectures specifically designed for time-series classification, such as IT or
TCN, outperform the standard CNN typically used so far

@ 1.month of O1 L1 data used for training and testing: obtain reasonable noise
rejection and detection efficiencies on single-detector data

v Labeled dataset available on zenodo: https://zenodo.org/records/11093596
@ Application of the models on the remaining 3 months of O1 L1 data
@ All the classifiers independently detect on January 4, 2016

v Possible astrophysical origin investigated and looks plausible

v In the past other papers have investigated this event (Alexander H. Nitz et al

2020 ApJ 897 169)

@ Currently working on O1 data from H1 + p-astro calculation

A. Trovato, SISSA, 26th June 2024

16


https://zenodo.org/records/11093596
https://iopscience.iop.org/article/10.3847/1538-4357/ab96c7
https://iopscience.iop.org/article/10.3847/1538-4357/ab96c7

Acknowledgment

This work is (partially) supported by ICSC — Centro Nazionale di Ricerca in High

Performance Computing, Big Data and Quantum Computing, funded by European Union —
NextGenerationEU

This research has made use of data or software obtained from the Gravitational Wave Open Science Center
(gwosc.org), a service of the LIGO Scientific Collaboration, the Virgo Collaboration, and KAGRA. This material is
based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National
Science Foundation, as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the
Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of
Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO
was provided by the Australian Research Council. Virgo is funded, through the European Gravitational
Observatory (EGO), by the French Centre National de Recherche Scientifigue (CNRS), the ltalian Istituto
Nazionale di Fisica Nucleare (INFN) and the Dutch Nikhef, with contributions by institutions from Belgium,
Germany, Greece, Hungary, Ireland, Japan, Monaco, Poland, Portugal, Spain. KAGRA is supported by Ministry
of Education, Culture, Sports, Science and Technology (MEXT), Japan Society for the Promotion of Science
(JSPS) in Japan; National Research Foundation (NRF) and Ministry of Science and ICT (MSIT) in Korea;
Academia Sinica (AS) and National Science and Technology Council (NSTC) in Taiwan.

A. Trovato, SISSA, 26th June 2024 17



Backup slides



Training and testing datasets

* 1 month of L1 data without know GW detections Signal injection:
(between Nov 25, 2015 and Dec 25, 2015) * Position random in the segment but almost fully
* Segments of fixed duration: 1 second contained
 Bandpass filter [20,1000] Hz * Type pf signal: (BBH, waveform model SEOBNRv4)
* No superposition between segments  mi,m2 € (10,50) Mo & m1+m2 € (33,60) Mo
* Glitch position random in the segment (if short * SNR € (8,20)

duration, fully contained) or tailing over multiple
segments if duration > 1's
o Samples for training:
* Noise: 2.5e5
» Signal: 2.5e5
e Glitch: 0.7e5
» -Samples for testing:
* Noise: 5e5
o Signal: 5e5 e e = =TS X
+ Glitch: 0.8€5 -
A. Trovato, SISSA, 26th June 2024
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Has it an astrophysical origin?

@ Checks that the transient signal is compatible with a GW waveform model

v ‘Bayesian parameter estimation: Bilby

v Independent check: denoising convolutional neural network by Bacon et al 2023
Mach. | earn.: Sci. Technol. 4 035024

S

Clean Corrupted

reconstructed
clean input

Latent Denoising: model that takes

Decoder noisy signals and returns clean
fo signals

Enconder and decoder are CNNs
20
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ML used for GW signal detection

@ Lot of literature see e.g. this page: https://iphysresearch.github.io/

Survey4GWML/#fn:174
3500
3000
= Example: M. B. Schafer 2500
et al. Phys. Rev. D 107 2000
(2023) 023021 1500

1000
v. Multi-detector
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Dataset 1

Dataset 2

—— A: MFCNN —— D: TPI FSU Jena
B: PyCBC —— E: Virgo-AUTh
—— C: CNN-Coinc === F: cWB

Dataset 4

10 10°

False alarms [1/month]
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ROC curves

- CNN
TCN

0.4 +—
10°°

65 164 10 102 101

False alarm rate [s71]

100

0.9-

0.8 -

0.7 -

0.6 -

0.5 -

| T
— | T with softmax

0.4 +——
10°°

65 164 10 102 101

False alarm rate [s71]

 Shaded area between the highest and the lowest ROC curves obtained for each model in the 10 repetitions of
train and test

* “IT with softmax” refers to IT model with softmax activation function applied at the last fully connection layer
during training.
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Probability to be classified as signal

Probability to be classified as signal can be used as test statistic

n
)
-
=
O
O
e
Q
N
©
-
—
O
Z

0.25 050 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50
Probability to be classified as signal, Ps

* Noise and glitch classes looks similar in all cases because in general the networks are not able
to distinguish between glitch and noise (so they behave as only one class actually)

* We decided to focus on the signal identification and sum up noise + glitch

A. Trovato, SISSA, 26th June 2024
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Softmax activation

o Lavers of the Fully .. During the
T network Connécted _, W training this goes
* ﬁmmmm — e to the loss

function which
get optimised

Psignal : Pnoise, Pglicth Psignal , Pnoise, Pglicth
Not normalised Normalised

* \We removed the use of the softmax activation step during the training, so that the loss function receives
directly the output form the fully connected layer
» This was useful because often the membership probabilities in output of the softmax activation are close to

one and their numerical precision can create problems and TCN and IT had an improvement when removing
this activation

 However when all the training is done the final output of the last epoch needs the use of only one last softmax
activation to get normalised membership probabilities

A. Trovato, SISSA, 26th June 2024 24



Single-precision floating-point format

@ Single precision = significand precision: 24 bits (23 explicitly stored)
@ The closest Ps can get to 1 (without being 1) is Ps = 1 - 224

@ When calculating lambda out of it one gets: -logio(1 - Ps) = 7.22

A. Trovato, SISSA, 26th June 2024
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CNN used as starting point

@ CNN used: small network with 4 convolution layers (with dropouts and pooling) used as
classifier to distinguish the 3 classes: noise, noise+signal, glitches

i | ‘ “‘J
| "'\;,,\"““' ‘ ‘ l ’ ) kl, ‘H\‘ lll’lu‘ W

\ il ) .
Ll l W Py \m""\\'q.J““;M “;\H‘ i

o
I Fully ( -
S Connected OUtpL.It. probability of
signal o T Layer belonging to each class
L
Layer # 1 3 4 5]
Type Conv Conv Conv Conv Dense
Filters 256 128 04 64 -
Kernel 16 8 8 4 s Optimiser: Adam
Strides 4 2 2 1 -
Activation relu relu relu relu softmax
Dropout 0.5 0.5 0.25 0.25 -
Max Pool 4 2 2 2 -

A. Trovato, SISSA, 26th June 2024
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Temporal Convolutional Network

@ Web page: https://github.com/philipperemy/keras-tcn

@ Paper: https://arxiv.org/abs/1803.01271 Arguments of the TCN

i ; x nb filters=64,
@ Easy to install: pip install keras-tcn cernel sizes3,

nb_stacks=1,

dilations=(1, 2, 4, 8, 16, 32),
padding="'causal’,

use skip connections=True,
dropout rate=0.0,
return_sequences=False,
activation="relu’,

kernel initializer='he normal’,

2017).) The distinguishing characteristics of TCNs are: 1)
the convolutions in the architecture are causal, meaning that
there is no information “leakage from future to past; 2) the
architecture can take a sequence of any length and map it to
an output sequence of the same length, just as with an RNN.
Beyond this, we emphasize how to build very long effective
history sizes (1.e., the ability for the networks to look very
far into the past to make a prediction) using a combination
of very deep | networks (augmented with residual layers) and

use batch norm=False,
use layer norm=False,
use weight norm=False,
. Pay attention to the receptive field (you how far the |

' model can see in terms of timesteps) '

Rpieta = 1+ 2 (Kyize — 1) - Natack - Z d, Results given here: nb_filters=32, kernel_size=16

!




:Residual block (k, d)

Dropout ‘ -
I : : Convolutional Filter

Rel U Identity Map (or 1x1 Conw)

5 9
.”i(ldvn : WeghtNom
: '

_ Diated Causal Conv
(! — ) : ! 1x1 Conwv

Dropout foptonal)
4 .

AV Hidden ReLu

WexghtNom

4

Diéated Causal Conv

(a)
Figure 1. Architectural elements in a TCN. (a) A dilated causal convolution with dilation factors d = 1,2, 4 and filter size £ = 3. The
receptive field 1s able to cover all values from the input sequence. (b) TCN residual block. An Ix1 convolution 1s added when residual
input and output have different dimensions. (¢) An example of residual connection 1n a TCN. The blue lines are filters 1n the residual
function, and the green lines are 1dentity mappings.
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Inception time

iInput

multivariate
time series Bottleneck

Convolution

Convolution

channels

output
multivariate

MaxPooling time sernes

Convolution
(bottleneck)

@ https://arxiv.org/abs/1909.04939)
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https://arxiv.org/abs/1909.04939

Input layer Hidden layers Output layer Filter / Kernel

o

\ ﬁ‘\ Output 1
X

fc 4
Fully-Connected Fully-Connected
Neural Network Neural Network

Conv_1 Conv_2 RelLU activation
Convolution Convolution ol

-
(5 x 5) kernel Max-Pooling (5 x5) kernel Max-Pooling (with

valid padding (2x2) valid padding (2x2)

KA\ Ar*\f*\

INPUT ” nl channels nl channels n2 channels n2 channels || «

(28 x 28 x 1) (24 x 24 x n1) (12x12 xnl) (8 x8 xn2) (4 x4 xn2)

Filter / Kernel

dropout)

OUTPUT

n3 units




