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Observing our Universe

SN185 SN1987A
Image Credit: X-ray: NASA/CXC/SAO & ESA; Infared:
NASA/JPL-Caltech/B. Williams (NCSU)

Electromagnetic waves



Observing our Universe
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Electromagnetic waves
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Observing our Universe
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Gravitational waves



Gravitational wave detectors
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GW170817: The first Binary Neutron Star Merger

Gamma rays, 50 to 300 keV GRB 170817A

GW170817

s
«

h

EM Partners with LIGO-Virgo, Astrophys. J. Lett. 848, L12 (2017)

sGRB progenitors

Kilonova and the
origins of heavy
elements

‘Standard siren’
measurement of

the Hubble
constant

Speed of gravity



Multi-Messenger Astrophysics

Image credit: NASA
Goddard Space Flight
Center/ Dana Berry

Neutrinos

Visible/infrared light et
Radio waves



The Challenge: the 3 deadly F’s

Fast: Fuzzy: Faint:

need to identify GW transients as  gravitational-wave detectors are for EM counterparts at the nominal BNS
quickly as possible in order to have a more like radio receivers than ~ merger range of 200Mpc and BBH
chance to catch the earliest light telescopes ranges out to Gpc

Time (seconds)

Jet—ISM Shock (Afterglow)
-10 -6 -4 -2 0 Optical (hours—days) ,
500 " 6 Radio (weeks—years)
g’ Ejecta—ISM Shock
/(:]\ = Radio (years)
? '§ — '
&9 g . - N
50 5 Kilonons,
0 g Merger Ejecta ~
1 o le'r il & Disk Wind
NA . ‘, = S‘u-lain data | N -é \ 0 1-03¢
's I Glitch model ﬂ b1 -— ‘ '
X Al R
: )T 2
= =}
7 ! r .8
-6 I S P . Y /‘w\
-1.25 -1 -0.75 -0.5 -0.25 0

Time (seconds)

py
LIGO-Virgo Collaborations, Phys. Rev. Lett. 119, 161101 (2017) Metzger and Berger, Astrophys. J. 746, 1 (2012)
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oles LIGO-Virgo-KAGRA Neutron Stars
- - - - . -_ . - . = 8 cmmm - - L o - — - e - ] a — L Com— - 1
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Y
11 events 44 events in 03a, 55 total 35 events in 03b, 90 total
from O1+02 1041 “subthreshold” events in 01,02,03a (catalogs are cumulative)




Gravitational-wave detector data

Continuous time series (1Hz, 128Hz ... 16kHZz)

Gravitational Wave channel:
~20GB/day (per instrument)

Physical Environment
Monitors (seismometers,
accelerometers,
magnetometers, microphones
etc)

Internal Engineering Monitors
(sensing, housekeeping,
status etc)

Together with various
intermediate data products
>2TB/day (per instrument)
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Interefometric and environmental sensors

vaurt Y End
I. ‘.’ : [ ] Electronics room
_____ ; | i1tm
| o MAST |
................... g —
oL
o]
Ly Corner I Bia
i Station
i ? o
C LN \{ - ]
o L
LASER TABLE '
- sl
] O XEnd :
Electronics room Electronics room I
TEirtmEEE :
_______________________________________________________ il  1te@EE
| A A ROOF VT RS i
F e - i | :F_ MAST |
MAST | i Lo . . J
. LEGEND =~ T 5
i. B 1-axis accelerometer : -. [ 'I
I Bs 3-axis accelerometer i =
| ®  microphone i READOUT
| I temperature sensor — ]
| | 3-axis magnetometer wamess: building wall |
B 3-axis seismometer mm= vacuum chamber : i
T tiltmeter = in air optics table :
single frequency radio  oLD>  optical lever :
I

mains voltage monitor A
infrasound microphone :Fo

radio receiver
weather station

LIGO and Virgo Collaborations, CQG 33, 134001 (2016)

Each LIGO detector
records over 200,000
auxiliary channels
that monitor
instrument
(interferometric)
behavior and
environmental
conditions.

Enables the study of
correlations
(couplings) of the
gravitational wave
channel with the
environment
(including global
events, e.g.
lightnings).
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Machine Learning for Gravitational-wave data

Lots of data
Rich, complex signal space

Rich, complex noise space
Low-latency/real-time requirements
Computing revolution:

Success of deep learning has led to sophisticated
algorithms

Rise of heterogeneous computing has enabled deep
learning

Developing ML+GPU integration has enabled large
throughput computing

Developing ML+FPGA/ASIC for low latency computing

FastML for Science A3D3 Institute

Streaming data rate [B/s]
s 2 3

i
S,
w

1011_

10°

107

» Neural
Networks!

A3Da3 Institute

| FPGA/ASIC

T T I

1 PBlyr
1 TB/yr

c®
CPU/GPU
LHC HLT |
LHC L1T puN 1
Neuro

IceCube @ Netflix 4K UHD

L I L ! I l
10-8 106 1074 10-2 100 102 104 108

Latency requirement [s]


https://fastmachinelearning.org/
http://a3d3.ai

Requirements for ML deployment in GW searches s

Training

L oad time-series data from disk and
efficiently move to GPU

Leverage simulations to create robust
datasets

Implement signal processing
operations on GPU

Infrastructure design goals

Intuitive - maps on to familiar,
physically meaningful concepts
Composable - hierarchical layers of
abstraction support new use cases
seamlessly

Inference

Offline - produce predictions on
O(100+vears) of background data

Online - produce transient detections
on real-time data in O(1s) and
estimate parameters in O(1s)

Stream time-series into NN

Heterogeneous computing
backends/data-types

Integrated - ecosystem of tools
following same standards and
nomenclature

Efficient - make the most out of
parallel computing resources

1



Gravitational-wave data analysis workflows
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MLA4GW/HERMES: a new ecosystem for end-to-end ML-based GW searches .



https://github.com/ML4GW

DeepClean: a noise subtraction platform

Non-fundamental noise in
interferometers can be subtracted,
when such noise is “witnessed” by
auxiliary channels:

h(t) = s(t) + n(r)

n() = n,, (1) +n,(2)
d \/
PossIBLE GW SIGNAL

h _ . 7
W, n,0)=F({w};0)
{W,'(t)}

DETECTOR NOISE

A

r(t) = h(t) — n, (1)

Ormiston et al. “Noise Reduction in Gravitational-\Wave
Data via Deep Learning.”

H1 strain sensitivity, 2019-09-05 20:53:42 UTC (1251752040.0)
"118}{% power 36.6 (W), D [1.4/1.4, 10/10, 30/30 (Mo )] =[108.2, 519, 810.2] (Mpc)

-
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Residual strain
after noise subtraction
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https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066

DeepClean: a noise subtraction platform

H1 strain sensitivity, 2019-09-05 20:53:42 UTC (1251752040.0)
"118}{% power 36.6 (W), D [1.4/1.4, 10/10, 30/30 (Mo )] =[108.2, 519, 810.2] (Mpc)

Non-fundamental noise in

Lndent -t

n
interferometers can be subtracted, 1o \ % ,
when such noise is “witnessed” by T .l W |
auxiliary channels: = W | | T
Zoel N | B T
W) = s(f) + n(t & SN L
(1) = s() (’\) o) = 1o + D) s Wl L L
! - -
DETECTOR NOISE 10 100 103
Frequency (Hz), [BW, ENBW] = [0.125, 0.1875] (Hz)
h(1) i Real-time implementation
) with ~1s latency
Wit feieiie i i ieinibing | esassn | provided to analyses
downstream
Able to go beyond linear
couplings/algorithms
Convolutional auto-encoder Also implemented on an
Ormiston et al. “Noise Reduction in Gravitational-Wave FPGA 16

Data via Deep Learning.”


https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066

DeepClean performance in O3: Amplitude
Spectral Densities and Parameter Estimation

10—20 -
0, Side bands due to coupling
& with other technical noise
IN
I
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rad]

0.5 - ™ DeepClean / Original
M Nonsens / Original

05- M DeepClean/ Nonsens

dec[rad]

57 58 59 60
Frequency [Hz]

Demonstrated non-linear subtraction on 60

Hz power lines and sidebands!

Ormiston et al. “Noise Reduction in Gravitational-\Wave

Data via Deep Learning.”

61

dec[rad]
62 63

Multiple tests on BBH injections
to demonstrate unbiased
recovery of astrophysical signals

Saleem et al (2023). Demonstration of Machine Learning-assisted
real-time noise regression in gravitational wave detectors, 17



https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066
https://arxiv.org/abs/2306.11366
https://arxiv.org/abs/2306.11366

DeepClean performance in O3:
time-volume reach and latencies
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Sensitive volume (V*T) fractional gain or loss
(with/without DeepClean) as a function of the
false alarm rate in a GstLAL search.

Saleem et al (2023). Demonstration of Machine Learning-assisted
real-time noise regression in gravitational wave detectors,
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Trade-off between latency and quality: the
ASD ratio improves with higher aggregation
latency, at the cost of increased overall
latency.
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https://arxiv.org/abs/2306.11366
https://arxiv.org/abs/2306.11366

Aframe: detecting compact binary coalescences
Residual Network architecture trained to map 1.5 second windows of h(t) time-series
data to scalar value that indicates likelihood of signal being present in the window.

Training on 10 days of coincident H1 and L1 strain from beginning of
LIGO-Virgo-KAGRA's O3a run; 100,000 IMRPhenomPv2 waveforms from
astrophysical prior used for training search space: 5 - 100 M_solar.

Extensive data augmentation to show the model as diverse a training set as possible.
Event identification:

SR == Input Kernel Maximum integrated value
\ | NN outputs . . .
Avatage ob tid 1 used as detection statistic

]
|
N~ : Red sliding window represents
‘ N current window of data
\ evaluated by network

06009 Ot C-o8_ ooy

s I 1 0.5 0 015 1 1.5

Time from trigger [s]

As coalescence time Green dots show time-series
enters window, network Dotted purple line shows of neural network outputs
begins to ring average of last 1 second of
network outputs 19


https://github.com/ML4GW/aframev2

Aframe: pipeline sensitivity

mi = 35 My, ma = 35 M,

—— Aframe —— MBTA 81
o167 ¢WB PyCBC-BBH /
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False alarm rate (years™!)

https:.//zenodo.org/records/7890437

False alarm rate (years™')

Sensitive volume calculation
is the same as the one used
to measure performance of
LVK pipelines in GWTC-3
catalog

Competitive performance on
higher-mass catalog
distributions

Work remains to be done for
lower masses — alternative
architectures or smarter
training techniques

E. Marx, W. Benoit et al (2024), A
machine-learning pipeline for real-time
detection of gravitational waves from compagf)
binary coalescences



https://zenodo.org/records/7890437
https://arxiv.org/abs/2403.18661

Computational cost and throughput

Training: ~44 hours on 1 GPU on a
16GB V100 GPU

Evaluation: Analysis of O3 took ~30
hours for 21 years of livetime on 8
GPUs, roughly 750 seconds of data
processed per second per GPU

Total time scales roughly linearly with
number of GPUs

Ran pipeline online over ~1 month of
“replayed” O3 data emulating
real-time environment: median (90%)
latency is 8.4 (37.1) seconds faster
than rest of CBC pipelines (as
reported here:
https://arxiv.org/abs/2308.04545)

200 -

150 -

Count

100 -

50 -

0 -

—— Median = 3.9s
=== 90% =4.3s

Latency (s)
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https://arxiv.org/abs/2308.04545

AMPLFI: from detections to astrophysics

Source parameter estimation:

di(t))= ni(t) + Fy ihy (& 6) + Fy ihx (8 6)

bttt

Antenna  Our goal Antenna Our goal
factor (its factor (its
parame! ters) parame ters)

Calculate posteriors via likelihood estimation:
L(d|@)=(0)  L(d|0)x(0)
z [ L(d|0)=(0)d6
Likelihood-Free (simulation-based) Inference: train neural network to estimate posteriors p(0|d)
Model true posterior distribution with a normalizing flow:

p@d) =

G Papamakarios et al, JMLR

])(Qld) ~ ([(“)(9|([) — pll(]:l—l (9))|d(‘fl‘.],1._1 (9)| Vol. 22. Art. 57 2617-26 (2021)
d

The flow is parameterized via a neural network, and trained by minimizing the
Kullback-Leibler divergence

N
1 :
N Zl log g, (01" |d)
Train neural network to estimate posteriors for any assumed signal morphology (e.g.
sine-Gaussian, binary coalescences etc) embedded in real instrument noise and that’s how
you arrive at AMPLFI: Accelerated Multi-messenger Parameter-estimation using LFI !

Deep Chatterjee, Ethan Marx et al 22
submitted for publication (2024)


https://dl.acm.org/doi/abs/10.5555/3546258.3546315
https://dl.acm.org/doi/abs/10.5555/3546258.3546315

AMPLFI performance

Fraction of events in C.1.

N=500, p-value=0.7674
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Putting all these together: “Who will bell the cat?”

Who wants to train ML algorlthms
| to find new GW sources?
(2]

Cartoon adopted
from Alec Gunny

ml4gw/HERMES: https://github.com/ML4GW 24



https://github.com/ML4GW

Bringing Al into GW and MMA data 5
analyses

Models are

Scientist uses simulations to generate > distributed and
data, priors to regularize training versioned in
. @ centralized
Q] 1l repositories
7 N | 3

Dedicated inference
applications host
models, interacted

with via simple client

APls
Dedicated tools make < y
iteration/exploration frictionless

Y L4GVV/H ERM ES an ecosystem for ML applications in GW enabling fast deployment,
fast inference, small computation footprint and optimized for computing heterogeneity

u

Hardware-accelerated Inference for Real-Time
Gravitational-Wave Astronomy

MLAGW ks e
Alec Gunny et al Nature Astronomy (2022

Tools to make training and deploying neural networks in service of gravitational wave physics simple and accessible to all! People

Includes a couple particular applications under active research. B j—
" A gT
- Ce 2]

README . md


https://arxiv.org/search/gr-qc?searchtype=author&query=Gunny,+A
https://www.nature.com/articles/s41550-022-01651-w
https://github.com/ML4GW

Summary and outlook

ml4gw: A new computing ecosystem for ML
applications in GW data analyses

Emphasis on real-time processing for
improving multi-messenger prospects of the
GW observatories

focus on latency
minimal computational footprint (a

couple of GPUs to keep up with
real-time)

Offline implementation
portable, robust pipelines
emphasis on throughput
extensible

End-to-end ML-based workflows have been
implemented addressing:

data cleaning
transient event detections
parameter estimation

Expecting to deploy in production for real-time
use during LIGO-Virgo-KAGRA's current O4
observing run

https://observing.docs.ligo.org/plan

https://www.svom.eu/
https://rubinobservatory.org/

Updated
2024-06-14
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Virgo

KAGRA
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https://observing.docs.ligo.org/plan/
https://rubinobservatory.org/
https://www.svom.eu/

https://www.svom.eu/

S u m m a ry a n d o u tI oo k httos:/rbinobervatorv.orq/

ml4gw: A new computing ecosystem for ML

applications in GW data analyses https://observing.docs.ligo.org/plan/
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Offline implementation
portable, robust pipelines
emphasis on throughput

extensible

End-to-end ML-based workflows have been
implemented addressing:

data cleaning
transient event detections

parameter estimation COme JO| n!

Expecting to deploy in production for real-time - I
use during LIGO-Virgo-KAGRA's current O4 httDS //g ithub.com/MLAGW

observing run 27
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https://github.com/ML4GW
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EXTRA SLIDES
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Multi-Messenger Astrophysics

Image credit: Bill Saxton, NRAO

Neutrinos

Visible/infrared light ,
Radio waves
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Comparison to LVK’s O3 detections

Reanalyzing LVK’s O3 observing run, 37/50 candidates detected by gpstime FAR (1/yr)
Aframe at false alarm threshold of 1 per 5 months; missed events have
network matched filter SNR<13.1 or chirp mass < 10 M_solar. The latter 1262835012 .15 3.6
is consistent with Aframe’s sensitive volume measurements.
1246523564 .75 4.0
Also the next 10 most significant Aframe events have no overlaps with /1
the LVK catalogs, but have partial overlap with the Olsen et al event list 1264333383.00 4.2
21
1 1238351045. 00 4.4
¥ 15 -
§ - 1251010355 .50 4.7
£ 5 . . M- 4 1264246793.25 5.9
1 1 1 1 1 1 1 1 1 1 1
25 cwB
NN Pycecsroad 1249032684.75 11.0
ES] | | MBTA @
[— g I 1253452013 .50 131..'7
e ctLAL i I - 1259411705.25 12.0
™ | PyCBC-BBH

25 0

E. Marx, W. Benoit et al, in preparation
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https://arxiv.org/abs/2201.02252

GWAK: an anomaly detection framework

Strong astrophysical motivation to look beyond modeled binary coalescences: supernova,
neutron star glitches, magnetars, GRBs, FRBs, cosmic strings and cusps, unknown
unknowns may emit GWs that we can not fully modeled currently and thus can not be
searched with a matched-filter approach

We refer to them as anomalous and aim to develop a semi-supervised approach which would

let us to discover such anomalous signals without explicit modeling
use multiple autoencoders to create embedded space
use real background and inject signals
verify on anomalous signals that aren’t included in training

GWAK is the Gravitational Wave Anomalous Knowledge, an algorithm using recurrent
autoencoders inspired by similar approaches (Quasi Anomalous Knowledge. by Sang Eon Park et al.
https:/arxiv.ora/abs/2011.03550) taken in performing anomaly detection in LHC data

Core idea: go beyond vanilla anomaly detection in 1-dimensional approach where the
distance between the input and output is used as a metric for anomaly detection:

: .

1-dim detection statistic

Introduce multiples axes, for
both signal and background =
allows to more efficiently select
signal-like anomalies
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https://arxiv.org/abs/2011.03550
https://arxiv.org/abs/2011.03550

GWAK: multi-dimensional approach

BBBBBBBBBB

A 3-dim GWAK space example

BBH-like Signal

Raikman et al (2023) , GWAK: Gravitational-Wave
Anomalous Knowledge with Recurrent
Autoencoders, https://arxiv.org/abs/2309.11537 33



https://arxiv.org/abs/2309.11537
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A 3-dim GWAK space example
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GWAK efficiency during O3

Detection Efficiency, SNR, window: 50

The final metric as a function of \\

SNR for GWAK axes training -5 = Lo =

signals, BBH (blue), SG 64-512 e
Hz (yellow), SG 512-1024 Hz ™ . ™ 8 400 1050

(salmon)

and for potential (unseen) 2
anomalies, WNB 40-400 Hz
(pink), WNB 400-1000 Hz
(purple), and Supernova
(orange)

=25 -+

Final metric value, a.u.

=35 -

The black lines of varied width ol | , , ‘
correspond to different FARSs, SNR
from the FAR of 1 per hour to 1

per year

For each of the lines, the events
that are below that line would be
detected.
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Low latency sky localization comparisons on

O3 alerts
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Injected signal: Mchirp = 45
solar masses, g=0.7,D L =1
Gpc and optimal SNR~20 added
on 20 different background
segments
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Parameter recovery is

consistent with injections and o S
stochastic samplers, although
posterior widths are tighter with

the later e
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