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Observing our Universe

SN185 SN1987A
Image Credit: X-ray: NASA/CXC/SAO & ESA; Infared: 
NASA/JPL-Caltech/B. Williams (NCSU)

Electromagnetic waves
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Observing our Universe

SN185 SN1987A
Image Credit: X-ray: NASA/CXC/SAO & ESA; Infared: 
NASA/JPL-Caltech/B. Williams (NCSU)

Electromagnetic waves
Particles: neutrinos, cosmic rays

Koshiba, M. et al. 1988
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Observing our Universe

SN185 SN1987A
Image Credit: X-ray: NASA/CXC/SAO & ESA; Infared: 
NASA/JPL-Caltech/B. Williams (NCSU)

Electromagnetic waves
Particles: neutrinos, cosmic rays
Gravitational waves

Koshiba, M. et al. 1988 GW150914
PRL 116, 061102, 2016

4



5

Gravitational wave detectors

The lower 
noise gets, 

the better 
the ability 
to detect 

GWs



GW170817: The first Binary Neutron Star Merger

sGRB progenitors

Kilonova and the 
origins of heavy 
elements

‘Standard siren’ 
measurement of 
the Hubble 
constant

Speed of gravity

EM Partners with LIGO-Virgo, Astrophys. J. Lett. 848, L12 (2017)

Image credit: NASA GSFC & Caltech/MIT/LIGO Lab
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Gravitational waves

Visible/infrared light
Radio waves

Neutrinos

X-rays/Gamma-rays

Multi-Messenger Astrophysics
Image credit: NASA 
Goddard Space Flight 
Center/ Dana Berry



The Challenge: the 3 deadly F’s
Fast:
need to identify GW transients as 
quickly as possible in order to have a 
chance to catch the earliest light

Fuzzy:
gravitational-wave detectors are 
more like radio receivers than 
telescopes

Faint:
for EM counterparts at the nominal BNS 
merger range of 200Mpc and BBH 
ranges out to Gpc

LIGO-Virgo Collaborations, Phys. Rev. Lett. 119, 161101 (2017) Metzger and Berger, Astrophys. J. 746, 1 (2012)
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11 events 
from O1+O2

44 events in O3a, 55 total
1041 “subthreshold” events in O1,O2,O3a

35 events in O3b, 90 total 
(catalogs are cumulative)

GW transient events
Image: https://www.zdnet.com/article/kafka-channels-the-big-data-firehose/



Gravitational-wave detector data
Continuous time series (1Hz, 128Hz … 16kHz)

Gravitational Wave channel: 
~20GB/day (per instrument)

Physical Environment 
Monitors (seismometers, 
accelerometers, 
magnetometers, microphones 
etc)

Internal Engineering Monitors 
(sensing, housekeeping, 
status etc)

Together with various 
intermediate data products 
>2TB/day (per instrument)
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Interefometric and environmental sensors
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Each LIGO detector 
records over 200,000 
auxiliary channels 
that monitor 
instrument 
(interferometric) 
behavior and 
environmental 
conditions.

Enables the study of 
correlations 
(couplings) of the 
gravitational wave 
channel with the 
environment 
(including global 
events, e.g. 
lightnings).

LIGO and Virgo Collaborations, CQG 33, 134001 (2016) 



Lots of data
Rich, complex signal space
Rich, complex noise space
Low-latency/real-time requirements
Computing revolution:
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Neural 
Networks!

Machine Learning for Gravitational-wave data

Success of deep learning has led to sophisticated 
algorithms
Rise of heterogeneous computing has enabled deep 
learning
Developing ML+GPU integration has enabled large 
throughput computing
Developing ML+FPGA/ASIC for low latency computing

FastML for Science A3D3 Institute

https://fastmachinelearning.org/
http://a3d3.ai


Training

Load time-series data from disk and 
efficiently move to GPU

Leverage simulations to create robust 
datasets

Implement signal processing 
operations on GPU

Inference

Offline - produce predictions on 
O(100+years) of background data

Online - produce transient detections 
on real-time data in O(1s) and 
estimate parameters in O(1s)

Stream time-series into NN

Heterogeneous computing 
backends/data-types

Infrastructure design goals

Intuitive - maps on to familiar, 
physically meaningful concepts
Composable - hierarchical layers of 
abstraction support new use cases 
seamlessly

Requirements for ML deployment in GW searches

Integrated - ecosystem of tools 
following same standards and 
nomenclature 
Efficient - make the most out of 
parallel computing resources

1
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Gravitational-wave data analysis workflows
Data quality: 
identify and 
mitigate noise 
sources (“detector 
characterization”)

Detection: identity 
data instances that 
stand out statistically 
as deviating from 
noise

Inverse problem: 
extract intrinsic and 
extrinsic 
signal/source 
parameters

Noise subtraction 
nonlinear regression

Modelled transients
supervised
Unmodelled transient
semi-supervised
Vetoes Glitch identification

Parameter estimation
Normalizing flows

ML4GW/HERMES: a new ecosystem for end-to-end ML-based GW searches
14

https://github.com/ML4GW


DeepClean: a noise subtraction platform

Non-fundamental noise in 
interferometers can be subtracted, 
when such noise is “witnessed” by 
auxiliary channels:

Ormiston et al. “Noise Reduction in Gravitational-Wave 
Data via Deep Learning.”
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https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066


DeepClean: a noise subtraction platform

Non-fundamental noise in 
interferometers can be subtracted, 
when such noise is “witnessed” by 
auxiliary channels:

Ormiston et al. “Noise Reduction in Gravitational-Wave 
Data via Deep Learning.”

Real-time implementation 
with ~1s latency
Provided to analyses 
downstream
Able to go beyond linear 
couplings/algorithms
Also implemented on an 
FPGA

Convolutional auto-encoder
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https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066


DeepClean performance in O3: Amplitude 
Spectral Densities and Parameter Estimation

Demonstrated non-linear subtraction on 60 
Hz power lines and sidebands!

Multiple tests on BBH injections 
to demonstrate unbiased 
recovery of astrophysical signals

Ormiston et al. “Noise Reduction in Gravitational-Wave 
Data via Deep Learning.”
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Saleem et al (2023), Demonstration of Machine Learning-assisted 
real-time noise regression in gravitational wave detectors,  

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.033066
https://arxiv.org/abs/2306.11366
https://arxiv.org/abs/2306.11366


DeepClean performance in O3: 
time-volume reach and latencies

Sensitive volume (V*T) fractional gain or loss 
(with/without DeepClean) as a function of the 
false alarm rate in a GstLAL search.

Trade-off between latency and quality: the 
ASD ratio improves with higher aggregation 
latency, at the cost of increased overall 
latency.

Saleem et al (2023), Demonstration of Machine Learning-assisted 
real-time noise regression in gravitational wave detectors,  18

https://arxiv.org/abs/2306.11366
https://arxiv.org/abs/2306.11366


Aframe: detecting compact binary coalescences
Residual Network architecture trained to map 1.5 second windows of h(t) time-series 
data to scalar value that indicates likelihood of signal being present in the window.
Training on 10 days of coincident H1 and L1 strain from beginning of 
LIGO-Virgo-KAGRA’s O3a run; 100,000 IMRPhenomPv2 waveforms from 
astrophysical prior used for training search space: 5 - 100 M_solar.
Extensive data augmentation to show the model as diverse a training set as possible.
Event identification:

19

https://github.com/ML4GW/aframev2


Aframe: pipeline sensitivity
Sensitive volume calculation 
is the same as the one used 
to measure performance of 
LVK pipelines in GWTC-3 
catalog

Competitive performance on 
higher-mass catalog 
distributions

Work remains to be done for 
lower masses – alternative 
architectures or smarter 
training techniques

https://zenodo.org/records/7890437

E. Marx, W. Benoit et al (2024), A 
machine-learning pipeline for real-time 
detection of gravitational waves from compact 
binary coalescences  

20

https://zenodo.org/records/7890437
https://arxiv.org/abs/2403.18661


Computational cost and throughput
Training: ~44 hours on 1 GPU on a 
16GB V100 GPU

Evaluation: Analysis of O3 took ~30 
hours for 21 years of livetime on 8 
GPUs, roughly 750 seconds of data 
processed per second per GPU

Total time scales roughly linearly with 
number of GPUs

Ran pipeline online over ~1 month of 
“replayed” O3 data emulating 
real-time environment: median (90%) 
latency is 8.4 (37.1) seconds faster 
than rest of CBC pipelines (as 
reported here: 
https://arxiv.org/abs/2308.04545)

21

https://arxiv.org/abs/2308.04545


AMPLFI: from detections to astrophysics

22

Source parameter estimation:

Calculate posteriors via likelihood estimation:

Likelihood-Free (simulation-based) Inference: train neural network to estimate posteriors 
Model true posterior distribution with a normalizing flow:

The flow is parameterized via a neural network, and trained by minimizing the 
Kullback-Leibler divergence

Train neural network to estimate posteriors for any assumed signal morphology (e.g. 
sine-Gaussian, binary coalescences etc) embedded in real instrument noise and that’s how 
you arrive at AMPLFI: Accelerated Multi-messenger Parameter-estimation using LFI !

G Papamakarios et al, JMLR 
Vol. 22, Art. 57 2617-26 (2021)

Deep Chatterjee, Ethan Marx et al,
submitted for publication (2024)

https://dl.acm.org/doi/abs/10.5555/3546258.3546315
https://dl.acm.org/doi/abs/10.5555/3546258.3546315


AMPLFI performance

P-P plot from inferences with AMPLFI over 500 
Binary Black Hole systems

Sampling times for AMPLFI 
(1 GPU) vs. nested sampling 
runs (24 CPUs)

Deep Chatterjee, Ethan Marx et al,
submitted for publication (2024)
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Chunked loading 
of background 

data

Putting all these together: “Who will bell the cat?”

Who wants to train ML algorithms 
to find new GW sources?

Who wants to

Optimize time-series read-in and caching
Write waveform generation code
Write power spectrum libraries
Maintain python envs
Manage GPU libraries
Write tests
Optimize GPU execution
Version datasets
Set up experiment tracking
Automate hyperparameter sweeps
Establish test-time metrics
Visualize failure modes
Analyze performance on subpopulations
Build all this into CI/CD, etc.

ml4gw/HERMES: https://github.com/ML4GW
Cartoon adopted 
from Alec Gunny

https://github.com/ML4GW


Bringing AI into GW and MMA data 
analyses

Hardware-accelerated Inference for Real-Time 
Gravitational-Wave Astronomy
Alec Gunny et al Nature Astronomy (2022)

ML4GW/HERMES: an ecosystem for ML applications in GW enabling fast deployment, 
fast inference, small computation footprint and optimized for computing heterogeneity 

2
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https://arxiv.org/search/gr-qc?searchtype=author&query=Gunny,+A
https://www.nature.com/articles/s41550-022-01651-w
https://github.com/ML4GW


Summary and outlook
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https://observing.docs.ligo.org/plan/

https://rubinobservatory.org/
https://www.svom.eu/

Known Unknowns Unknown Unknowns

???
BBH populations

now
ml4gw: A new computing ecosystem for ML 
applications in GW data analyses
Emphasis on real-time processing for 
improving multi-messenger prospects of the 
GW observatories

focus on latency
minimal computational footprint (a
couple of GPUs to keep up with 

real-time)
Offline implementation

portable, robust pipelines
emphasis on throughput
extensible 

End-to-end ML-based workflows have been 
implemented addressing:

data cleaning
transient event detections
parameter estimation

Expecting to deploy in production for real-time 
use during LIGO-Virgo-KAGRA’s current O4 
observing run

https://observing.docs.ligo.org/plan/
https://rubinobservatory.org/
https://www.svom.eu/


Summary and outlook
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https://observing.docs.ligo.org/plan/

https://rubinobservatory.org/
https://www.svom.eu/

Known Unknowns Unknown Unknowns

???
BBH populations

now
ml4gw: A new computing ecosystem for ML 
applications in GW data analyses
Emphasis on real-time processing for 
improving multi-messenger prospects of the 
GW observatories

focus on latency
minimal computational footprint (a
couple of GPUs to keep up with 

real-time)
Offline implementation

portable, robust pipelines
emphasis on throughput
extensible 

End-to-end ML-based workflows have been 
implemented addressing:

data cleaning
transient event detections
parameter estimation

Expecting to deploy in production for real-time 
use during LIGO-Virgo-KAGRA’s current O4 
observing run

Come join!
https://github.com/ML4GW

https://observing.docs.ligo.org/plan/
https://rubinobservatory.org/
https://www.svom.eu/
https://github.com/ML4GW
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EXTRA SLIDES
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Gravitational waves

Visible/infrared light
Radio waves

Neutrinos

X-rays/Gamma-rays

Multi-Messenger Astrophysics

Image credit: Bill Saxton, NRAO



Comparison to LVK’s O3 detections
Reanalyzing LVK’s O3 observing run, 37/50 candidates detected by 
Aframe at false alarm threshold of 1 per 5 months; missed events have 
network matched filter SNR<13.1 or chirp mass < 10 M_solar. The latter 
is consistent with Aframe’s sensitive volume measurements.

Also the next 10 most significant Aframe events have no overlaps with 
the LVK catalogs, but have partial overlap with the Olsen et al event list  

E. Marx, W. Benoit et al, in preparation
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https://arxiv.org/abs/2201.02252


GWAK: an anomaly detection framework
Strong astrophysical motivation to look beyond modeled binary coalescences: supernova, 
neutron star glitches, magnetars,  GRBs, FRBs, cosmic strings and cusps, unknown 
unknowns may emit GWs that we can not fully modeled currently and thus can not be 
searched with a matched-filter approach

We refer to them as anomalous and aim to develop a semi-supervised approach which would 
let us to discover such anomalous signals without explicit modeling

- use multiple autoencoders to create embedded space
- use real background and inject signals
- verify on anomalous signals that aren’t included in training

GWAK is the Gravitational Wave Anomalous Knowledge, an algorithm using recurrent 
autoencoders inspired by similar approaches (QUasi Anomalous Knowledge, by Sang Eon Park et al. 

https://arxiv.org/abs/2011.03550) taken in performing anomaly detection in LHC data

Core idea: go beyond vanilla anomaly detection in 1-dimensional approach where the 
distance between the input and output is used as a metric for anomaly detection:

1-dim detection statistic

Introduce multiples axes, for 
both signal and background ⇒ 
allows to more efficiently select 
signal-like anomalies

32

https://arxiv.org/abs/2011.03550
https://arxiv.org/abs/2011.03550


GWAK: multi-dimensional approach

A 3-dim GWAK space example

Raikman et al (2023) , GWAK: Gravitational-Wave 
Anomalous Knowledge with Recurrent 
Autoencoders, https://arxiv.org/abs/2309.11537 33

https://arxiv.org/abs/2309.11537


GWAK: multi-dimensional approach

A 3-dim GWAK space example

34



GWAK efficiency during O3
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The final metric as a function of 
SNR for GWAK axes training 
signals, BBH (blue), SG 64-512 
Hz (yellow), SG 512-1024 Hz 
(salmon)

and for potential (unseen) 
anomalies, WNB 40-400 Hz 
(pink), WNB 400-1000 Hz 
(purple), and Supernova 
(orange) 

The black lines of varied width 
correspond to different FARs, 
from the FAR of 1 per hour to 1 
per year

For each of the lines, the events 
that are below that line would be 
detected. 

Raikman et al (2023) , GWAK: Gravitational-Wave 
Anomalous Knowledge with Recurrent 
Autoencoders, https://arxiv.org/abs/2309.11537

https://arxiv.org/abs/2309.11537


AMPLFI (2-LIGO 
detector network) 

Bayestar (2-LIGO 
detector network)

Low latency sky localization comparisons on 
O3 alerts

Singer & Price PRD 93, 024013 (2016)

S200129m

S200311bg

Deep Chatterjee, Ethan Marx et al,
submitted for publication (2024)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.93.024013
https://gracedb.ligo.org/superevents/S200129m/view/
https://gracedb.ligo.org/superevents/S200311bg/view/


Sample parameter estimation result

Injected signal: Mchirp = 45 
solar masses, q=0.7, D_L = 1 
Gpc and optimal SNR~20 added 
on 20 different background 
segments

Posterior samples: AMPLFI in 
blue, Bilby/Dynesty [Ashton et 
al. ApJS 241, 27 (2019)] in red

Parameter recovery is 
consistent with injections and 
stochastic samplers, although 
posterior widths are tighter with 
the later

Deep Chatterjee, Ethan Marx et al,
submitted for publication (2024)37

https://iopscience.iop.org/article/10.3847/1538-4365/ab06fc
https://iopscience.iop.org/article/10.3847/1538-4365/ab06fc
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The A3D3 Institute (www.a3d3.ai)
Accelerated AI Algorithms for Data Driven Discovery
Explore real-time AI in MMA, HEP and NeuroScience
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http://www.a3d3.ai/

