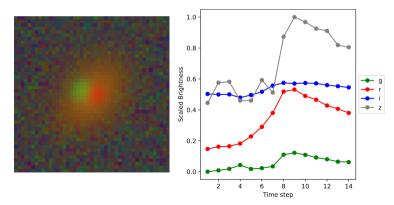
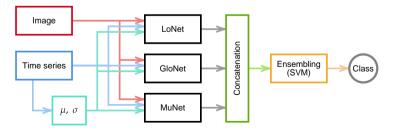
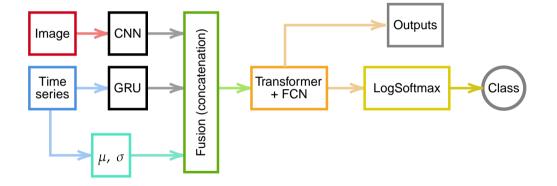

A multimodal neural network for the study of gravitational lenses

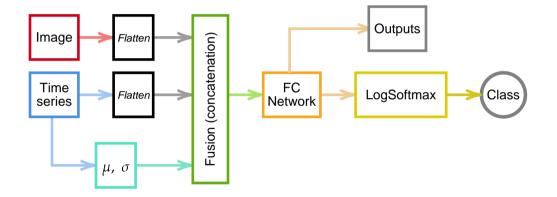

Nicolò Pinciroli 11.07.2024 **Discovering** gravitationally-lensed supernovae given a $45 \times 45 \times 4$ image and 4 brightness time series

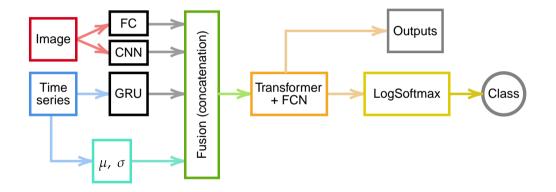
Multi-class single-label classification (No lens, Lens, LSNIa, LSNCC)

Motivation

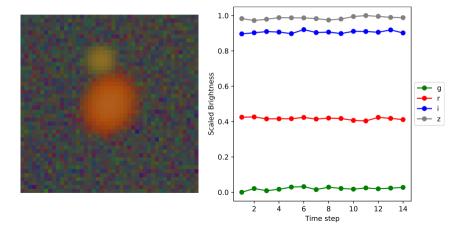

- Very **rare** phenomena (\implies training with simulated data)
- Huge amount of data from future astronomical surveys

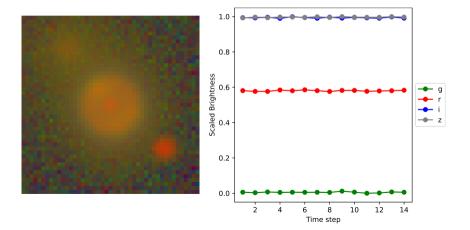



Solution

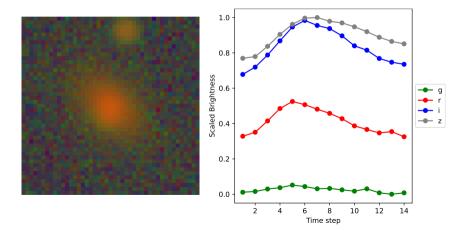

Ensemble of multimodal DL networks to exploit images and time series

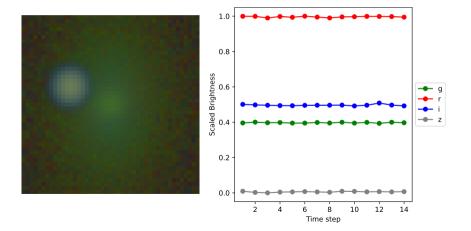
- Implementation of **three** multimodal neural **networks** that focus either on local and global features
- Each network is trained independently
- Results are **ensembled** with SVM

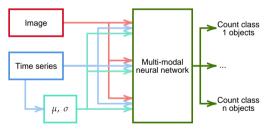



	DESI-DOT	DES-deep	DES-wide	LSST-wide
DeepZipper	77.1	58.6	51.7	74.3
DeepZipper II	78.9	57.4	49.8	70.7
STNet	85.1	58.4	82.5	84.3
LoNet (Ours)	87.0	67.5	85.8	87.2
GloNet (Ours)	77.2	62.3	76.8	76.8
MuNet (Ours)	87.9	67.9	86.5	88.5
DeepGraviLens (Ours)	88.7	69.6	87.7	88.8
Improvement	3.6	11.0	5.2	4.5

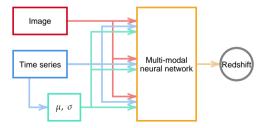
- Improvement wrt the **state of the art (**+3.6% to +11.0% accuracy)
- Improvement wrt **single modalities** (from +3.7% to +7.3% accuracy)
- Improvement wrt the **ensemble** of less than 3 multimodal networks (up to +12.0% accuracy)


Not lensed body (correct prediction) Spherical geometry

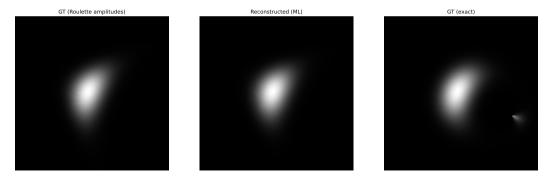

Lensed body (correct prediction) Ring pattern, flat time series


Lensed supernova (correct prediction) Elliptical shape, peak in the time series

Lensed supernova (predicted as lens) Halo, but flat time series!


- Objects counting
 - Different types of objects in different quantities \implies counting problem with ordinal regression
 - Multi-input multi-output network

- Redshift estimation
 - Estimating redshift is usually time-consuming
 - Regression problem
 - Multi-input single-output network


Objects counting

- Different types of objects in different quantities \implies counting problem with ordinal regression
- Multi-input multi-output network
- Redshift estimation
 - Estimating redshift is usually time-consuming
 - Regression problem
 - Multi-input single-output network

Current research

- Find an analytical description of gravitational lenses using Roulette amplitudes
 - Gravitational lenses can be approximated using the Roulette formalism (\rightarrow 2D Taylor expansion in polar coordinates)
 - Given an image, determine the Roulette amplitudes (\rightarrow Taylor expansion coefficients)

Thank you for the attention

Scan the QR code to access our publication!

Bibliography

[VF23] Nicolò Oreste Pinciroli Vago e Piero Fraternali. "DeepGraviLens: a multi-modal architecture for classifying gravitational lensing data". In: Neural Computing and Applications 35.26 (giu. 2023), pp. 19253–19277. DOI: 10.1007/s00521-023-08766-9. URL: https://doi.org/10.1007/s00521-023-08766-9.