Identification of Extended Emission Gamma-Ray Burst Candidates Using Machine Learning

Rosa L. Becerra Postdoc Univerità degli Studi Tor Vergata, Roma

Garcia-Cifuentes, Becerra, De Colle et al. ApJ, Volume 951, July 2023

Seventeenth Marcel Grossmann Meeting Pescara, Italy 07–12 July

Funded by the European Union

European Research Counci Established by the European Commission

Motivation of the work **Classification of GRBs** 70 **CURRENT CLASSIFICATION** 60 The identification of subclasses in the GRBs is GRBs 50 evidenced by plotting the histogram of its duration T90 and its cut-off at 2 seconds Number 40 30 *Too interval is defined by the time at which 5% and 95% of* the total counts have been detected. 20 10 There are events whose properties of populations are hybrid: Extended Emission GRBs (GRB 211211A)

10

Motivation

Classification of GRBs- Different progenitors 15

IS THIS A RIGHT CLASSIFICATION?

- The populations are not separated
- Isolated progenitors?
- Hybrid events, as short GRBs with EE.
- Instrumental selection effects

...the classification is not perfect!

211211A (T90=50 seconds)

Objectives

Classification of GRBs

USING A MACHINE LEARNING APPROACH WE COULD:

- Find correlations based on GRBs' light curves or their features.
- Associate them with their progenitors and subjacent physical processes.
- Provide a simple way to characterize any event concerning the total sample rapidly.

• Uses datasets from Swift/BAT, BATSE, and Fermi GBM • Discern two groups of GRBs within the first burst second

• Confidence analysis, EE GRBs cannot be robustly classified

• Found KN-associated GRBs are located in separate clusters

Data

The Neil Gehrels Swift Observatory Data set

1527 light curves of GRBs from Swift/BAT Available swift.gsfc.nasa.gov/results/batgrbcat/

Example: GRB 060614 light curve in 64ms

Data Pre-processing

GRBs vary significantly in duration, it is essential to standardize the data set of each event in such a way that preserves intrinsic properties but removing differences without a physical origin.

Jespersen et al. (2020) ApJL, 896, L20.

1. Limit out of duration intervals

2. Reduce Noise

3. Normalize by total fluence of each event

4. Standardize the size of events: Zero-pad

5. Perform Discrete Fourier Transform

t-distributed stochastic neighbor embedding (t-SNE)

t-SNE is a popular non-linear dimensionality reduction technique data sets.

used for visualizing high dimensional

t-SNE has an impressive ability to create compelling two-dimensional maps from data with hundreds or even thousands of dimensions.

t-SNE doesn't always produce similar output on successive runs, and there are additional hyperparameters related to the optimization process.

9

...in a nutshell

ABOUT

ADVANTAGES

DISADVANTAGES

To probe that our method is valid Convergence

Iteration: 0

There is a clear correlation between each GRB duration and its position on the map

Credits: ClassiPyGRB

Hyperparameter Optimization Perplexity

"It is related to the number of nearest neighbors that is used in other manifold learning algorithms"

Key Points

- Duration structure remains independent
- At low perplexities, the cluster separation increases.
- Equilibrium between physics and plot.

Credits: ClassiPyGRB

Hyperparameter Optimization Learning Rate

learning_rate:10

Key Points

- General structure remains independent.
- At low perplexities, adjusting learning rate plays a significant role in separating clusters. We have to be careful.

Classification Properties

Key Points

- Similar to duration-based classification
- It is based on light curve properties, instead of one single parameter

Classification Properties

Key Points

The classification is almost independent of selection effects:

> • ~97% of the GRBs between telescopes have the same classification.

Credits: Steinhardt et al. (2023), ApJ, 965

Extended Emission GRBs

Key Points

Extended Emission GRBs, appear to be located on the edge of the diagrams.

Steinhardt et al.(2023) ApJ state:

"Tiny groups or individual objects" with unique properties can be attached to the most similar group"

EE GRBs are clustered through t-SNE maps

Garcia-Cifuentes, K. et al. (2023)

EEGRBs Candidates

Nearest neighbors to previous EE:

- GRB 200716C
- GRB 180618A
- GRB 080123

Our method was correct

Garcia-Cifuentes, K. et al. (2023)

ClassiPyGRB

Open-source Python3 package to download, process, visualize and classify Gamma-Ray-Bursts (GRBs) from the Swift/BAT Telescope

			•		×
GRB GRB	Plot Di	FT			
104	out of				
IJA	out of	<u></u>	15-25keV	n	
	ala Mangaladi Apathangapan				
			25-50keV		
	llean dig a graci da da A galgi a galgi da	e del templete.	an tagai	1	
			0-100keV		
United (p. Alimitica)	ar melle di na pro- grada di na pro-	[instantions]			
		10)0-350ke\	<u></u>	
	ynenseligene Diesystered	ale and a phatest			
50	200	250	0		
jger t	ime (s)				

ClassiPyGRB: Identification of subsamples of interest 1. Ultra-Long GRBs

Ror, A. K. et al 2024 (arXiv:2406.01220)

We have used a machine learning tool, t-Distributed Stochastic Neighbor Embedding (t-SNE), developed by Garcia-Cifuentes et al. (2023), to find differences between our selected sub-samples and other LGRBs and SGRBs detected by Swift-BAT till December 2023. t-SNE processes the high-energy light curve of GRBs and, based on similarities and dissimilarities between the light curves, places them in a two-dimensional map by forming a cluster of points where similar events lie close. The axes of this two-dimensional map do not

Ror, A. K. et al 2024 (arXiv:2406.01220)

"Exploring Origin of Ultra-Long Gamma-ray" Bursts"

ClassiPyGRB: Identification of subsamples of interest 2. Bright GRBs

Angulo Valdez, C. et al 2024, ApJ 527

Thank You! (Specially Maria & Gibrán)

Contact info

rosa.becerra@roma2.infn.it keneth.garcia@correo.nucleares.unam.mx

Identification of Extended Emission Gamma-Ray Burst *Candidates Using Machine Learning,* Garcia-Cifuentes, K et al. ApJ 591, 2023

ClassiPyGRB Repository

https://github.com/KenethGarcia/ClassiPyGRB/

