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Magnetars and bursting activity
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(SGR1935 bust storm light curve, 1120s taken on 2020 April 28 00:40:58: arXiv:2009.07886)

e Magnetic Field B ~ 10** - 10° G
e Rotation Period P ~ 0.3 — 125

o Age 7~ 10° — 10° years
e X-ray Luminosity Ly ~ 103 — 103 erg/s

Burst Energy F ~ 10%® — 10*! erg

Burst Duration At~ 0.1 —1s

Peak Luminosity Ljc.x & 10419 erg/s

Light Curve at 0.128 s Resolution
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(Artistic representation of a magnetar)
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f-mode Gravitational Wave Emission Model
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(Fundamental vibrational mode induced GW emission from Hydromagnetic Instabilities in (strain modelized for an f-mode GW emission)

Rotating Magnetized Neutron Stars, Paul D. Lasky : arXiv:1203.3590)
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Stacking bursts

individuals GW bursts

N

>t
A Stacked GW burst
EM bursts L
counts/s
| \ GWs ? =t
BURSTS—» 1 :.lll N ‘ " ."l.". _ STACKING——>

e/

A

v

Detection of Gravitational Waves from Repetitive Magnetar Bursts Using Autoencoder-Based Denoising and Stacking - Hugo Einsle 4/16



Burst identification

NICER data (1120s, 1-10 keV energy range)

Detected by comparison to background modeled by poisson noise (P<0.1)
153 bursts detected :

1s<

Total time considered for study : 6358s

Bursts times = “on-source segments”

“Off-source segments” = (Total time) - (Bursts times)

Burst 174: from 199500594.84844765 to 199500595.84844765
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(A single burst isolated from SGR1935 2020 burst storm centered around peak emission, April 28 00:40:58: arXiv:2009.07886)
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Burst times Bursts data streams
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Denoising———

- Use trained
autoencoders to denoise

burst TF-maps

Stacked TF-map

=

Stacking >

- estimate global mean and global standard
deviation

- compute threshold
- identify "signal” and "background" pixels
- sum "signal” pixels
- average "background” pixels
- generate "Stacked" TF-map

—Clustering—>
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Workflow - statistics estimation

FAR curve for detection statistic p_lambda

Cluster ‘- passed allCut
DET | J’\J\
1072+
Cluster » Coherent TF-map n
DET J r_’\ - - \ |—> Pr E
g 1073+
Cluster > &
DET K r_’\

0.0 05 10 15 2.0
p_lambda
(clusters are cross-correlated between detectors to build a coherent
detection statistic efficient at detecting coherent excess of energy in
a network of GW detectors)

(Example of ranked P_lambda values as a function of the
false alarm rate estimated on off-source segments)

False alarm rate (FAR) : how often a random noise fluctuation mimics a true signal.
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Denoising - Autoencoders

TF-map \Latent space Denoised TF-map
Encoder Decoder J/v\

Denoising made using autoencoder architecture for
deep neural networks with 4 millions parameters :
- Encoder:
- Convolutional block with MaxPooling2D
and Dropout
- Decoder:

- Convolutional block with attention gate

(Schematic representation of the structure of an autoencoder for TF-map denoising)

Original - Epoch 66 Reconstructed - Epoch 66 Target - Epoch 66

Training data : off-source segments in between
bursts on different types of waveforms to not overfit - 2 _ <
on morphology or frequency. °g g g
- Training input : signal + noise
- Training target : signal only
Loss function : Mean Square error
Curriculum Iearning - From loud to faint target (Example of testing TF-map used to measure the testing loss value during training)

Detection of Gravitational Waves from Repetitive Magnetar Bursts Using Autoencoder-Based Denoising and Stacking - Hugo Einsle 8/16



Stacking procedure

Set of denoised TF-maps outputted from autoencoders : . 1 2 n
(“w” stands for “window”) 14 {’w W ynie s U }

- . L M N L M N
Compute global mean value and global standard deviation across all denoised o 1 _xo
TF-maps : L4 NZZZ - NZZZ '_w)
k=1 i=1 j=1 k=1i=1 j=1
Threshold computation (Theta) : 0 _
=W+ Q- Oy
Compute “Signal” mask S_k and “Background” mask Bk, w”k is the k-tk TF-map of Sk - {pij = wk LD > 9}

the list and p_ij is the pixel at position ij on the k-th TF-map : " ”
= {pij € w" : p;; < 6}

Compute the accumulated “background” A*b and “signals” A*s, by applying masks to : : b & :
the corresponding TF-maps, as the sum of all “signal” pixels on one hand and the sum A% = E w' - S* B E i~ B
of all “background” pixels on the other hand :

Ab

Compute the average “background” : E —

n
Compute the combined “stacked” TF-map with accumulated “signal” and average C — As e E
“background”:
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Results - Background and injections (Monte-Carlo data)

- 2slong FTmaps
- Autoencoder trained on 11 waveforms :
- Background estimated on ~6000s of “off-source” data

- 20 “on-source” windows for injections
- Injection of a magnetar waveforms (not in the training set)

FAR curve for detection statistic p_lambda
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Results - Injection statistic vs Number of windows (Monte-Carlo data)
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Evolution of detection statistic for a set of injections (magnetarF, hrss = 1e-22) as a function of the number of windows
stacked (1, 5, 10, 15 and 20 windows)
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False-alarm rate (s 1)
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Results - Background FAR vs Number of windows (Monte-Carlo data)

FAR vs Detection statistic
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FAR curves estimated for increasing number of windows stacked to account

for the evolution of the loudest trigger’s detection statistic as a function of
the number of windows.

Detection Statistic vs Number of windows (background)
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Loudest background FAR trigger detection statistic a a function of the
number of windows stacked
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Results - Background FAR vs Number of windows (Monte-Carlo data)

Comparison of Background and Injections Fits

® Data (Background)
® Data (Injections)
6 Background Fit: a*log(x)+b

a=0.25, b=0.27

Injections Fit: a*log(x)+b
a=0.86, b=3.95

Both injections and background
loudest trigger’s detection
statistic evolve |logarithmically as
a function of the number of
windows, but which one evolves
the fastest ?

Detection Statistic (p_lambda)

=
L

,__,/.,/’/
10° 10!
Number of windows

(Loudest P_lambda value as a function of the number of windows, and magnetarF stacked trigger
detection statistic for alpha = 500) with a logarithmic function with a linear scaling and an offset)
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Results - Background and injections (real data)

- 03 data (GWOSC)

- 2slong FTmaps
- Autoencoder trained on 11 waveforms :
- Background estimated on ~6000s of “off-source” data

- 20 “on-source” windows for injections

- Injection of a magnetar waveforms (not in the training set)
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Results - Background FAR vs Number of windows (real data)

Comparison of Background and Injections Fits

® Data (Background)

® Data (Injections)
Background Fit: a*log(x)+b

74 a=0.35, b=1.96

Injections Fit: a*log(x)+b

a=1.03, b=3.71
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Conclusion

e Denoising using autoencoders allows to effectively reduce background pixels
while keeping excess of power from potential GW signals

e Stacking can help identifying repetitive and faint GW emission from
magnetars

e The more burst there is in a storm, the more we are likely to identify a signal
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Thank you for your attention !



