# Theoretical implications of *IXPE* polarimetric measurements for blazars

Fabrizio Tavecchio (INAF-OAB, Italy)

In collaboration with: E. Sobacchi, F. Bolis, A. Sciaccaluga, P. Coppi, G. Bodo

# AGN jets: the fundamental questions



Jet dynamics, speed, composition, power

Magnetic fields, díssipation, acceleration and emission mechanisms





Formation, collimation, acceleration

e.g. Blandford et al. 2019 Blackman and Lebedev 2022

# AGN jets: the fundamental questions





Formation, collimation, acceleration

> e.g. Blandford et al. 2019 Blackman and Lebedev 2022

# Jets pointing at us: blazars





SED dominated by the <u>relativistically boosted</u> non-thermal continuum emission of the jet.

$$L_{\rm obs} = L' \delta^4 \qquad \delta = \frac{1}{\Gamma(1 - \beta \cos \theta_{\rm v})}$$

Synchrotron and IC in leptonic models.

Also hadronic scenarios (synchrotron or photo-meson emission)

# Jets pointing at us: blazars



### **HSPs: extreme accelerators**



$$h\nu_{X} = 1 - 10 \text{ keV}$$
$$\gamma_{X} = \left(\frac{2\pi m_{e}c\nu_{X}}{eB\delta}\right)^{1/2} \sim 10^{5} - 10^{6}$$
$$ct_{\text{cool}} = 2.3 \times 10^{15} B_{-1}^{-2} \gamma_{X,6}^{-1} \text{ cm}$$

Compact regions

# Hints from IXPE (1)



PKS 2155-304 (Kouch et al. 2024)

18

# Magnetic fields at shocks

#### Compression

#### Self-generated field



Angelakis et al. 2016

Vanthieghem et al. 2020

### Stratified shock: a toy model



Tavecchio et al. 2018, 2020

# Stratified shock: a toy model



| Tavecchio, | submitted. |
|------------|------------|
|------------|------------|

| Model | $\gamma_{ m cut}~(	imes 10^5)$ | n   | $n_{e,0}$ | $B_{\perp,0}$ | $B_{z}$ | $r_{ m j}~(	imes 10^{15})$ | $\lambda$           | m    |
|-------|--------------------------------|-----|-----------|---------------|---------|----------------------------|---------------------|------|
|       | [1]                            | [2] | [3]       | [4]           | [5]     | [6]                        | [7]                 | [8]  |
| 1     | 8.5                            | 2.1 | 20        | 0.25          | 0.03    | 4.3                        | $5 \times 10^{13}$  | 0.5  |
| 2     | 12.6                           | 2.2 | 30        | 0.25          | 0.03    | 4.8                        | $1.2 	imes 10^{12}$ | 0.25 |

### **Recollimation shocks**



Costa et al. in prep

# **Polarization from recollimation shocks**



# **Shocks & energy stratification? Not necessarily!**

#### Bolis et al., submitted

Strong dependence on the electron slope (hence frequency)!



# **Shocks & energy stratification? Not necessarily!**

Bolis et al., submitted

Strong dependence on the electron slope (hence frequency)!



# Hints from IXPE: 2) limits to turbulence



Zhang et al. 2023

e.g. Marscher & Jorstad 2022

# Hints from IXPE: 3) EVPA rotations

Mkn 421







P vecto

m = 1

non-axysimmetric field

Koenigl & Choudhuri 1985

Observed during relatively high states

Di Gesu et al. 2023 See also Kim et al. 2023

# Jets pointing at us: blazars



### LSP:

# emission mechanisms and matter content



Zhang & Boettcher 2013

(One zone) Hadronic models predicts a relatively large polarization of the raising portion of the high-energy bump (synchrotron from protons and decay products) Constraining lower limits from IXPE (below optical)

Leptonic (SSC) preferred? Yes, but...



#### LSP:

# emission mechanisms and matter content



# **Upcoming: polarization at higher energy**

#### NASA-SMEX mission with a Compton Telescope (0.5-2 MeV)

Launch: 2027 Duration: 2 years PI John Tomsick (UC Berkeley)



### https://cosi.ssl.berkeley.edu

Institutions involved: U. C. Berkeley Naval Research Laboratory Clemson Univ. GSFC ASI (Italy) INAF (Italy) IRAP (France) Tokio and Nagoya Univ.



# **ISP/LSP** with COSI

The comparison between IXPE and COSI provides a measure of the SSC/EC relative contribution



NB: this assumes a regular B field!

Typical degree of pol. in optical are around 10-20%

Preliminary IXPE results suggest turbulence of moderate level.

We should expect a lower  $\Pi$ 

Feasibility still under study



# **Shock acceleration?**

DSA can work efficiently only in weakly magnetized jets (e.g. Sironi+2015) This is consistent with SED modeling (e.g. FT+2016)

This is inconsistent with jet production models (e.g. Komissarov et al. 2009)





Matthews et al. 2020

### **Energizing the particles**



Contopoulos 1994 Komissarov et al. 2009 Tchekhovskoy et al. 2009

## Magnetic field generation at shocks



# **Polarimetry in the X-ray band**

### Possible alternatives and predictions

|                             | Optical                                                                                   | Medium-Hard X-Rays                                              |  |
|-----------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--|
| Shock (turbulent)           | $\Pi \lesssim 15\%$ , variable;<br>$\chi$ variable, smooth rotations possible             | $\Pi \lesssim$ 30%, highly variable highly and rapidly variable |  |
| Shock (self-produced field) | $\Pi \lesssim$ 20%, slowly variable, flips by $\Delta \chi =$ 90 deg                      | $\Pi \gtrsim 40\%$ substantially constant, constant $\chi = 0$  |  |
| Reconnection (kink-induced) | $\Pi \lesssim$ 20–30%, moderately variable smooth rotations, $\Delta \chi \gtrsim$ 90 deg | same as optical<br>as optical                                   |  |

Tavecchio 2021



# Stratified shock: a toy model



Tavecchio et al. 2018, 2020

### Stratified shock: a toy model



Tavecchio in prep.

# Instabilities







Rayleigh-Taylor/centrifugal + Richtmyer-Meskov instabilities



Costa et al. in prep

Matsumoto et al. 2017, 2021 Komissarov & Gougouliotos 2018 Abolmasov & Bromberg 2023

# Instabilities

Low magn.



MHDjet

Sufficiently large B field can stabilize the jet

High magn.

## Particle acceleration: many places, several processes



### Stratified shock: a toy model



# Beyond one-zone An incomplete list ...



# Which kind of shock?

(mildy) relativistic shock  $\longrightarrow$  Sub-relativistic downstream (in the shock frame) Substantial beaming of the downstream emission  $\longrightarrow$  Large  $\Gamma$  of the shock in the observer frame if the shock is of normal incidence



?

Traveling relativistic shock  $\Delta z \sim c \Delta t \Gamma_{\rm sh}^2 \approx 1 {\rm pc}$ In 1 day (observed)

Modeling provides consistent parameters even for very distant epochs (months)



Sokolov et al. 2004, 2005 Tagliaferri et al. 2008 Zech & Lemoine 2021