

Online event reconstruction and classification in KM3NeT

Alessandro Veutro

on behalf of the KM3NeT collaboration

17th Marcel Grossmann Meeting, Pescara, 9th July 2024

Cherenkov neutrino telescope

Events topology in Cherenkov neutrino telescopes

Multi-messenger community

Multi-messenger community

KM3NeT

- Deep infrastructure under construction in the Mediterranean Sea
- Two instrument sites: **ORCA** (France) and **ARCA** (Italy) \rightarrow <u>Same technology</u> but <u>different physics</u>
- Construction started in **2015**

Status of the deployment

Multi-messenger program in KM3NeT

Data AcQuisition (DAQ) level

KM3NeT ORCA and ARCA

Follow-up of EM/GW alerts Offline time/space correlation search with catalogues (GRB, AGN, SN, etc.)

RECEIVING ALERTS

EM/MM external communities

Real-Time Analysis framework

8

Real-Time Analysis framework

8

Machine Learning in KM3NeT/ORCA

Machine Learning in KM3NeT/ARCA

ANGULAR RESOLUTION

Less than 1° for track-like events Around 2° for shower-like events

RESPONSE TIME

Total event processing time below 7 s for bot and ORCA

BACKGROUND REJECTION

WELL-DEFINED ALERT FOLLOW-UP STRATEGY

See Massimo Mastrodicasa's talk on "Neutrino real-time follow-ups with KM3NeT"!

ANGULAR RESOLUTION BACKGROUND REJECTION Less than 0.1° for track-like events Time coincidence of hits and up-going events selection + Around 2° for shower-like events Machine Learning techniques WELL-DEFINED ALERT FOLLOW-UP **RESPONSE TIME** STRATEGY Total event processing time below 7 s for both ARCA See Massimo Mastrodicasa's talk on and ORCA "Neutrino real-time follow-ups with KM3NeT"!

Take-home message!

KM3NeT has started to play its role in the field of the real-time multimessenger astronomy!

Thank you for your attention!

Backup slides

1 MITLE

TTIT

GNN classifier

GNN takes as input graphs, which are unordered sets of nodes and links. This makes GNN very flexible and suitable for a moving detector such as KM3NeT.

In the following, we will focus on the *atmospheric muon vs neutrino* classifier, which has been running in the online pipeline since June 2023 (see below). The output of the muon vs neutrino classifier is the *neutrino score*, a number between 0 and 1, that can be interpreted as the probability of a given event to be a neutrino.

GNN model

The GNN model implemented in KM3NeT is based on the **ParticleNet** architecture (see <u>here</u> for reference), which makes extensive use of **EdgeConv** (edge convolution) operations and also adopts the dynamic graph update approach.

The EdgeConv block starts with finding the k nearest neighboring particles for each particle, using the "coordinates" input of the EdgeConv block to compute the distances.

GNN performance

GNN performance on track-like events

GNN performance on track-like events

Alessandro Veutro, Online event reconstruction and classification in KM3NeT - 17th Marcel Grossmann Meeting, Pescara, 9th July 2024

KM3NeT

GNN performance on track-like events

