

Probing the origin of cosmic neutrinos in the multi-messenger era: results from ANTARES

Giulia Illuminati on behalf of the ANTARES Collaboration

Marcel Grossmann Meeting, Pescara, 2024

ANTARES telescope

IL NUOVO CIMENTO 41 C (2018) 134

3

Multi-messenger analyses: 3 approaches

Cross-correlation between archival events and multi-messenger catalogs

Multi-messenger real-time alerts triggering immediate neutrino follow-up

Multi-messenger analyses: 3 approaches

Cross-correlation between archival events and multi-messenger catalogs

Multi-messenger real-time alerts triggering immediate neutrino follow-up

Real-time neutrino alerts triggering immediate multi-messenger follow-up

Stacking search

Astrophys.J. 911 (2021) 1, 48

FIVE CATALOGS

O IC HE tracks	 Fermi 3LAC Blaz 	ars \star	Radio Galax	ies 🖌	Star F	orming G	alaxies	Dust	Obscured AGN	
		72	Equal Weighting				Flux Weighting			
	Catalog	λ	р	Р	$\Phi_{90\%}^{\mathrm{UL}}$	λ	р	Р	$\Phi^{\mathrm{UL}}_{90\%}$	
Best catalog 2.8σ pre-trial ➡ 1.6σ post-trial	Fermi 3LAC All Blazars	6.1	0.19	0.83	4.3	0.21	0.85	1.0	2.1	
	Fermi 3LAC FSRQs	0.83	0.57	0.97	2.2	${\sim}0$	~ 1	1.0	1.8	
	Fermi 3LAC BL Lacs	8.3	0.088	0.64	4.8	0.84	0.56	0.96	2.0	
	Radio Galaxies	3.4	4.8×10^{-3}	0.10	4.2	5.1	6.9×10^{-3}	0.13	4.7	
	Star-forming Galaxies	0.030	0.37	0.93	2.0	~ 0	~ 1	1.0	1.7	
	Dust-obscured AGNs	1.0×10^{-3}	0.73	0.98	1.5	~ 0	~ 1	1.0	1.4	
	IceCube High-energy Tracks	0.77	0.05	0.49	5.2					

p-value: 2.3 x $10^{-4} \rightarrow 3.7\sigma$ chance probability ($N_{sources} = 56$) = 1.3% $\rightarrow 2.5\sigma$

Search from radio-bright blazars

Steady emission

CATALOG

- 3051 blazars selected on the basis of VLBI radio flux
- o promising correlation with IceCube events (Plavin et al 2020, 2021, 2023)

1) Count how many *v*-blazar pairs are found with a *v*-blazar angular separation $< x \cdot \beta$

2) Stacking analysis based on maximum likelihood method

Results (x = 0.82): # of observed (expected) pairs: 469 (410.4)

- \rightarrow 59 pairs in excess
- \rightarrow 3 σ pre-trial significance
- \rightarrow 2.2 post-trial significance

Astrophys.J. 964 (2024) 1, 3

Search from radio-bright blazars

Result: 18 flares with over 3σ pre-trial significance

Chance probability: 1.4% (2.5o)

A posteriori study finds multi-messenger flare overlap for J0242+1101(PKS 0239+108)

Astrophys.J. 964 (2024) 1, 3

Separation

0.5% (2.9 σ) chance probability of v+radio+y correlation

More on multi-messenger searches

Searching for neutrinos from microquasar flares

➡ PoS(ICRC2023)1505

Searching for neutrinos compatible with IceCube neutrino flares

PoS(ICRC2023)1480

Searching for neutrinos coincident with GW events JCAP 04 (2023) 004

Details later this week in the ANTARES session

E

ANTARES: 15 vears of cosmic neutrino source searches

ANTARES, an observatory for high-energy neutrinos located below the surface of the Mediterranean Sea, finished its observational mission in February 2022 after operating for 15 years. Positioned strategically in the Northerm

③ 17:00 - 17:20

 (The 'Gabriele d'Annunzio' University, ICRANet and Aurum)
 Pescara, Italy

15 Years of Transient and Multi-Messenger Astronomv with the ANTARES Neutrino Telescope

The water Cherenkov neutrino telescope ANTARES was a 0.01 km3 volume detector located in the Mediterranean Sea which aimed at the detection of high-energy cosmic neutrinos, specially those of Galactic

③ 17:20 - 17:40

 (The 'Gabriele d'Annunzio' University, ICRANet and Aurum)
 Pescara, Italy

Presenter Giulia Illuminati

Ε

Multi-messenger analyses: 3 approaches

Cross-correlation between archival events and multi-messenger catalogs

Multi-messenger real-time alerts triggering immediate neutrino follow-up

Real-time neutrino alerts triggering immediate multi-messenger follow-up

Follow-up of IceCube neutrinos

 \rightarrow 115 neutrino IceCube triggers received, **37 analysed** (7 HESE, 3 EHE, 10 gold and 17 bronze)

 \rightarrow No neutrino candidates found compatible with any of the alerts

 \rightarrow 90% confidence level upper limits on the neutrino fluence:

~15 GeV/cm² in [2.8 TeV, 3.3 PeV] for E⁻² ~30 GeV/cm² in [0.4 TeV, 280 TeV] for E^{-2.5}

	Fluence U.L. (Gev cm	GCN	ATels	
	$dN/dE \propto E^{-2}$	$dN/dE \propto E^{-2.5}$	Id	Id
-28°	14 (2.8 TeV - 3.1 PeV)	27 (0.4 - 280 TeV)	/	9324
-26°	16 (2.9 TeV - 3.3 PeV)	43 (0.5 - 250 TeV)	19885	9440
-26°	13 (3.8 TeV - 3.8 PeV)	22 (0.7 - 370 TeV)	20134	9715
-57°	16 (2.5 TeV - 2.5 PeV)	26 (0.5 - 220 TeV)	20926	10189
-8°	16 (5.0 TeV - 5/0 PeV)	49 (1 - 450 TeV)	31252	15121
-4°	17 (5.0 TeV - 5.0 PeV)	40 (1 - 450 TeV)	31262	15127
-51°	16 (3.0 TeV - 3.3 PeV)	30 (0.6 - 300 TeV)	31556	15207
	-28° -26° -57° -8° -4° -51°	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

ANTARES visibility sky-map for IC170922 (TXS 0506+056)

11

Dedicated offline follow-up:

- TXS0506+056
 - \rightarrow Astrophys.J.Lett. 863 (2018) 2, L30
- AT2019dsg and AT2019fdr
 - \rightarrow Astrophys.J. 920 (2021) 1, 50
- HESE and EHE events
 - \rightarrow Astrophys.J. 879 (2019) no.2, 108

Follow-up of LIGO/Virgo GWs

Neutrinos would

- help **understand physics** of the merger, jets
- significantly constrain the location of the source

12

- RunO1 (2015): 3 GW events detected, all followed offline (online analysis not ready)
- RunO2 (2016-2017): 15 GW alerts, all followed online (manually)
- RunO3 (2019-2020): 78 GW alerts (22 retracted, 3 terrestrial noise, 2 non visible) \rightarrow 51 followed online (fully automatised)

Search in Spatial overlap between 90% GW contour and ANTARES visibility region ±500 s and ±1 hour

- No time&space coincidence found
- Results communicated through GCN circular
- ~4.5h from GW detection

Refined offline analyses:

- → Phys.Rev. D93 (2016) no.12, 122010, → Phys.Rev. D96 (2017) no.2, 022005
- \rightarrow Eur.Phys.J. C77 (2017) no.12, 911, $\rightarrow\,$ Astrophys.J. 850 (2017) no.2, L35
- → JCAP 04 (2023) 004

Follow-up of Fermi-GBM and Swift GRBs

Fermi/Swift alert message sent via the GCN within a few tens of seconds after GRB detection

- Automatic analysis of ANTARES online data
- Run for **8 years** (01/2014–02/2022)
- **317** Swift and **230** Fermi-GBM bursts followed
- No significant coincidences detected

Offline analyses:

- $\rightarrow\,$ Eur. Phys. J. C 77.1 (2017)
- \rightarrow Mon. Not. Roy. Astron. Soc. 469 (2017)
- → MNRAS 500 (2021) 5614

Skymap in Galactic coordinates with the positions of the **GRBs followed by ANTARES**:

 \rightarrow One coincidence event = p-value of 2-5×10⁻⁵

13

Follow-up of HAWC alerts

٠

٠

Skymap in Galactic coordinates with the positions of the **HAWC alerts**:

- Alerts of short (0.2 to 100 s) TeV transients sent by the HAWC Collaboration since mid 2019 (\rightarrow link to alert list) Targeting in particular GRBs Alerts channeled via the AMON framework and then
- distributed by the GCN
 Up to Feb. 2022, 22 triggers sent, 7 followed by ANTARES (in FoV)
- No coincidences found

- Additional follow-up of the IceCube + HAWC coincidences (NuEM) provided by AMON (→ link to alert list)
- No coincidence found

ANTARES visibility

Dark grey: 100%

White: 0%

Multi-messenger analyses: 3 approaches

Cross-correlation between archival events and multi-messenger catalogs

Multi-messenger real-time alerts triggering immediate neutrino follow-up

Real-time neutrino alerts triggering immediate multi-messenger follow-up

arXiv:2402.16498 [astro-ph.HE]

ANTARES alerts

Alert system (TAToO: Telescopes and Antares Target of Opportunity) operating since 2009

Four ANTARES alert triggers:

- High energy (HE) trigger: single neutrino with an energy ≥ 5 TeV. ______ Rate: ~1/month
- Very high energy (VHE) trigger: single neutrino with an energy ≥ 30 TeV. ——→ Rate: ~3-5/year
- Directional trigger: single neutrino from the direction (< 0.4°) of a local galaxy ---> Rate: ~1/month (< 20 Mpc) of the Gravitational Wave Galaxy Catalogue (GWGC). This trigger was mainly introduced to enhance the chance to detect a local CCSN.
- Doublet trigger: at least two neutrinos coming from close directions (≤ 3°) → No doublet trigger within a predefined time window (15 min).
- **Signal p-value** associated to alert: probability to find higher energy events in online data
- Alerts sent a few seconds (~6 s) after v detection
- All alerts sent privately using the Gamma-ray bursts Coordinates Network (GCN) normalised format and the standard VO Event format

ANTARES partner followers

ANTARES partner followers

H.E.S.S.

Murchinson Wide Field Array (MWA)

Statistics of ANTARES alerts

• 322 alerts sent to robotic telescopes

- 68% followed within 24h
- Late follow-up due to bad weather or direction under horizon/close to Sun/Moon
- 26 sent to Swift
- 15 sent to Integral
- 20 sent to MWA
- 2 sent to H.E.S.S.

Skymap in Galactic coordinates with the positions of the directions of all the TAToO alerts sent by ANTARES

▼ early follow-up (<24 h)

ANTARES visibility

No significant multi-messenger counterpart found

Flux U.L. F(E > 320GeV) < 2.4x10⁻⁷m⁻²s⁻¹

identified by MASTER

Analysis of **optical and IR archival data** point to USNO-B1.0 0626-0501169 being a young accreting G-K star or a binary system of chromospheric active stars (RS CVn), undergoing a flaring episode that produced the X-ray emission \rightarrow **unlikely (3%** chance association) to be the origin of ANT150901A

> Great interest in the community (15ATels+6 GCN) A total of 20 observatories answered to this trigger: one radio, 11 optical/IR, four X-ray satellites, four VHE gamma-ray and one neutrino observatory

Uncatalogued, relatively bright and variable X-ray source (0.5-1.4)x10⁻¹³ erg cm⁻² s⁻¹ detected by Swift-XRT 0.11° from neutrino direction

Summary and outlook

ANTARES

- Run for 15 years with high duty cycle (~95%)
- Rich multi-messenger archival and real-time program
- Over 300 ANTARES alerts were followed by multi-wavelength observatories
- Over 500 alerts received by multi-wavelength observatories were followed by ANTARES
- No significant correlation found, but important return of experience for KM3NeT
- Overview on ANTARES results in dedicated session this Thursday

FUTURE: KM3NeT

- Next generation neutrino telescope in the Mediterranean Sea
- Under construction: currently running with 28 DUs (ARCA) and 23 DUs (ORCA)
- Has already reached a comparable instantaneous sensitivity to cosmic neutrinos as ANTARES
- Better median angular resolution (~0.1° @1 PeV) and x100 ANTARES instrumented volume (ARCA)
- Will allow multi-flavour neutrino detection in real-time over an extended energy range (ARCA+ORCA)
 More on construction status, first results, and real-time framework of KM3NeT in next three talks

