Status and future perspectives of the European EM follow-up of GW sources

Maria Grazia Bernardini

INAF-OAB, Merate, Italy

GW6: Gravitational kHz waves - LIGO-Virgo-KAGRA @MG17 Pescara, 11 July 2024

Credit: NSF/LIGO/Sonoma State University/ A. Simonnet

The dawn of the GW astronomy: GW 150914

Two possible strategies:

- targeted search
- wide-field search (skymap ~ 600 deg²):
 - FAST: 23h after alert
 - WIDE: 90 deg² of large contained probability
 - DEEP: rlim~22.5 mag

Brocato+17

no electromagnetic (EM) counterpart found (but none expected)

When do we expect to have and EM counterpart?

BBH merger

Merger with at least one NS (BNS or NSBH)

1. Gamma-ray bursts (GRBs)

4

SGRBs:

merging of compact objects (NS-NS or NS-BH)

diverse merging times:

➡mix of early and late type galaxies

- kicks/migration from their birth sites: ➡offset
 - no correlation with UV light of their host galaxies
 - diversity of their environment
- no supernova associated
- Collimated emission, rare event

2. Kilonova

Optical/infrared isotropic transient produced in the merger of two NSs, powered by radioactive decay of neutron-rich species synthesized in the merger

- 10⁻⁴-10⁻² M_{sun} of ejecta at high velocities (0.1-0.3 c) undergo rapid neutron capture (**r-processes**) leading to heavy elements
- necessary to explain abundances of heavy elements

- large uncertainty in the composition of the materials leads to various expected colours, duration (a few days) and luminosities (~10⁴⁰ erg/s)
- previous observational evidences based on chromatic excesses in short GRB afterglows (e.g. GRB 130603B, GRB 060614, GRB 050709)

Follow-up strategy

Gra UTA: the GRAWitational Inaf TeAm

LVK observing runs: 01 and 02 (4+8 months)

- Alerts released via MoU
- Virgo joins during the last month
- 11 events (GWTC-1: 10 BBH, 1 BNS)

GW 170817/GRB 170817A

Fermi

Reported 16 seconds after detection

LIGO-Virgo

INTEGRAL

Reported 66 minutes

after detection

Reported 27 minutes after detection

Gamma rays, 50 to 300 keV 1,500 1,000 1,000 1,000 500 GRB 170817A GRB 170817A

Abbott+17; Goldstein+17; Savchenko+17

AT 2017gfo, the first spectroscopically identified kilonova

Pian, D'Avanzo+2017; Arcavi+17; Coulter+17; Evans+17; Lipunov+17; Smartt+17; Soares-Santos+17; Tanvir+17; Valenti+17, Lyman+17, Villar+17 and many many others

Three components kilonova model (with different velocity, mass and composition of the ejecta): 0.03-0.05 M_{sun} ejected mass, fast moving dynamical ejecta (0.2c) + slower wind (0.05c)

GRB 170817A: proof of the jet structure

Alexander+17,18; D'Avanzo+18; Dobie+18; Fong+19; Haggard+17; Hallinan+17; Hajela+19; Margutti+17,18; Mooley+18a,b; Reasmi+18; Ruan+18; Troja+18a,b,19,20; Ghirlanda+19; Piro+19; Margutti & Chornock 21 and many many others

11

 X-ray and radio emission non detected until 9 days and peaking at ~100 days

➡First GRB seen off-axis

- Evidence of proper motion and measure of the source size with VLBI Ghirlanda+19, Mooley+18
 - Final proof of the structured jet scenario

Structured jet: relativistic core with $\theta_{jet} < 5$ deg and $\theta_{view} \sim 20$ deg

The birth of multi-messenger Astronomy with GWs

GW 170717 / GRB 170817A / AT2017gfo results:

- Definition and consolidation of successful follow-up strategies
- First GW EM counterpart (at all wavelengths)
- First unambiguous observational evidence for a kilonova
- Evidence for kilonovae as a heavy elements factory
- "Smoking gun" for short GRB progenitors
- Clues on short GRB outflow geometry and properties: first evidence for a structured jet
- Direct EM distance determination (cosmology)

Still a number of open issues:

- What about BH-NS EM counterparts?
- What is the origin of the blue KN component?
- Are KNe associated to every short GRB?
- How to unveil the nature of the NS-NS remnant?

The birth of multi-messenger Astronomy with GWs

GW 170717 / GRB 170817A / AT2017gfo results:

- Definition and consolidation of successful follow-up strategies
- First GW EM counterpart (at all wavelengths)
- First unambiguous observational evidence for a kilonova
- Evidence for kilonovae as a heavy elements factory
- "Smoking gun" for short GRB progenitors
- Clues on short GRB outflow geometry and properties: first evidence for a structured jet
- Direct EM distance determination (cosmology)

Still a number of open issues:

- What about BH-NS EM counterparts?
- What is the origin of the blue KN component?
- Are KNe associated to every short GRB?
- How to unveil the nature of the NS-NS remnant?

Search and follow-up European teams

Governing Council: M. Branchesi, E. Brocato, P. D'Avanzo, J. Hjorth, P. Jonker, E. Pian, S. Smartt, J. Sollerman, D. Steeghs, N. Tanvir (Chair).

Executive Committee: M. Fraser, A. Levan (Chair), K. Maguire, D. Malesani, O.S. Salafia, S. Vergani.

A collaboration of ~ 200 ESO scientists

Approved programs during O3 and O4. Time for EM counterparts **follow-up** on every useful **VLT** instrument + **ALMA**, **radio**, **HST** and **JWST**.

LVK observing runs: 03 (12 months)

 Overall, 90 candidates discovered (GWTC-3): mostly BBHs, some are NS-BH binaries and one BNS

- Improved sensitivity, volume increased
- Alerts publicly released
- 3 detectors
- Two sub-runs of 6 months, interrupted after 10 month due to COVID19 pandemics

LVK observing runs: 03 (12 months)

- Improved sensitivity, volume increased
- Alerts publicly released
- 3 detectors
- Two sub-runs of 6 months, interrupted after 10 month due to COVID19 pandemics

- Overall, 90 candidates discovered (GWTC-3): mostly BBHs, some are NS-BH binaries and one BNS (GW 190425)
- No EM counterpart detected

Constraints on the optical-NIR emission associated to GW 190814

- Both skymap and galaxy target searches performed
- 27 transients detected
- No EM counterpart of the GW event identified
- Limits to a possible kilonova emission associated to this event, high ejecta mass excluded

Mpc

0

Panning for gold but finding helium

Ultra-stripped SN 2019wxt discovered when looking for counterparts of the GW candidate event S191213g (possible BNS, eventually not confirmed as real event)

Not a KN, but a peculiar SN

The current observing run: 04

O4 run just started (24th of May, 2023), for a duration of 20 months with one engineering break:

- Much larger observable volume
- Lower threshold for public alerts
- Virgo joined recently, improving significantly the localization (~5-10 deg²)

Follow-up facilities for 04

The Electromagnetic Spectrum

Wavelength (meters)		The Electromagnetic Spectrum				
Radio	CMB Microwave	Infrared	human sight Visible	Ultraviolet	X-ray	Gamma Ray
10 ³	10 ⁻²	10 ⁻⁵	10-6	10-8	10 ⁻¹⁰	10-12
			\sim	\sim	M	M

(SRT) Medicina	ALMA ESO/VLT	
Noto	LBT Asiago	
e-MERLIN	TNG (Loiano)	GRAWITA
VLA	ESO/NTT REM	ENGRAVE
EVN	VST	Super-GRAWITA
VLBI	Schmidt: Asiago / Campo Imperatore	

Significant events in O4 (so far)

O4b: 27 significant detection candidate, no BNS, 1 NSBH

S240422ed: candidate NSBH with high probability of being "EM bright"

- Possibly not an astrophysical event
- ENGRAVE followed-up several candidates reported by searching facilities
- No EM counterpart found

Probability of having a BNS or NSBH in O4b

How likely the detection of at least one such source is in the remainder of O4?

https://emfollow.docs.ligo.org/userguide/capabilities.html

The near future: 05

https://observing.docs.ligo.org/plan/

- Fifth observing run planned to start in a few years
- Sensitivity further improved

entry date and the target sensitivity are unclear

The 3rd generation: Einstein Telescope in Europe and Cosmic Explorer in US

24

Branchesi et al., 2023 JCAP

- 10 times more sensitive than 2G detectors (10³ times larger volumes)
- Wider frequencies (lower freq.)
 - Higher redshift accessible:
 - Study BNS/NSBH along the cosmic history
 - Increase of the detection rate
 - Better parameter estimation

The 3rd generation: Einstein Telescope in Europe and Cosmic Explorer in US

- 10 times more sensitive than 2G detectors (10³ times larger volumes)
- Wider frequencies (lower freq.)
 - Higher redshift accessible:
 - Study BNS/NSBH along the cosmic history
 - Increase of the detection rate
 - Better parameter estimation

Bailes et al., 2021 Nature

The 3rd generation: Einstein Telescope in Europe and Cosmic Explorer in US

26

Branchesi et al., 2023 JCAP

- 10 times more sensitive than 2G detectors (10³ times larger volumes)
- Wider frequencies (lower freq.)
 - Higher redshift accessible:
 - Study BNS/NSBH along the cosmic history
 - Increase of the detection rate
 - Better parameter estimation

The future is even brighter and louder!

The Electromagnetic Spectrum

Conclusions

- GW 170817/GRB 170817A/AT 2017gfo marks the **birth of multi-messenger** astronomy with GWs:
 - smoking gun for SGRB progenitors
 - ➡ first direct detection of a kilonova (and it looks exactly like it should be!)
 - first off-axis GRB and constraints on the outflow geometry
- Impressive observational campaign that required years of preparation, experience with GRBs and SNe crucial (astrophysical understanding of the targets and observational strategies)
- Yet a unicum, but we are confident about the rest of the O4 campaign with the contribution of Virgo to the network (small error regions are essentials)
- Fo perform successful observational campaigns:
 - Broad range expertise needed (observational-multiwavelength <u>and</u> multi messenger, theoretical)
 - Coordinated observational effort would be beneficial (e.g. Treasure Map <u>https://treasuremap.space/</u>)
 - Synergic network of big, medium and small facilities crucial (+space!!)

Backup slides

GRB 170817A: evidence for a structured jet

Mooley+18

Measure of the source size <2 mas with VLBI data (207 days) Ghirlanda+19

Final proof of the structured jet scenario

Structured jet: relativistic core with $\theta_{jet} < 5$ deg and $\theta_{view} \sim 20$ deg

Evidence for a proper (superluminal, v/c=4.1+/-0.5) motion with VLBI data (75 and 230 days) Mooley+18

Support the structured jet scenario

