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Circa 2006

The expected signals have a very low signal to noise ratio (SNR) with uncertain and varied waveforms.

Evolutionary computing based search algorithms can be trained to find signals in non-Gaussian noise. 

We used realistic interferometric detector noise as opposed to Gaussian noise to evolve the population of our algorithm.

Tests with Burst injections (SG, Q:8.9, 250Hz) at 90%CL:
generation 100:  2.7×107 false alarms / year for peak amplitude 3.5 
  2.3×107 false alarms / year for peak amplitude 5
generation 199: 1.6 × 105 false alarms / year for peak amplitude 3.5 
  6.5 × 10−6 false alarms / year for peak amplitude 5

It took roughly five days to complete 199 generations on a 64 bit, 1.8 GHz processor with a 1 MB cache and 1 GB DDR PC3200 RAM.

J. Phys.: Conf. Ser. 32 58 (2006)
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Basic Glossary: Multimessenger Approaches
“Multi-messenger astrophysics”: connecting different kinds of observations of the same astrophysical event or system



Realtime Data Analysis Infrastructure

“Multi-messenger astrophysics”: connecting different kinds of observations of the same astrophysical event or system
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Example: EM search triggered by GCN Circular 34616 - LIGO/Virgo/KAGRA 
S230904n: 1 counterpart neutrino candidate from IceCube neutrino 
searches

How to Search for Multiple 
Messengers—A General 
Framework Beyond Two 
Messengers 
Veske et. al., ApJ 908 216 
(2021)
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Dig deep, below noise level  => subthreshold  trigger sets



Multimessenger Search for GW+HEN sources with complete neutrino and GW 
datastreams

High-significance 
GWs

Sub-threshold 
GWs

High-significance 
neutrinos

Sub-threshold 
neutrinos

Statistical properties of the detector noise background intertwined with common 
detections and even more sub-threshold GW events

=> how to determine the background => key in estimating of significance / joint significance

Machine Learning approaches can help in both!

+
noise transients

+

+
background neutrinos

+



from LIGO Document G1801206, R Corley et al

>200,000 auxiliary channels per site (both statistical and computational challenge)



Current Status Quo

• Observe glitches  (what an interesting tree?)

• Find correlations with aux channels (certain trees grow better 
in specific environment)

• veto a section of h(t) (cut a tree when it bothers us, but keep 
growing  the type, as we hope we can recognize it again)

Ideally..

• If we know what makes a certain type grow we remove the 
cause

 Lets get rid of the glitches for forever

or at least establish a glitch model and remove its effect from data

Glitches

Abbott et al, 2017 --GW170817



Can we find glitches without looking at GW strain?
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Figure from D Davis et al, 2021 – uses GravitySpy (Zevin etal 2017)

Auxilliary channels 
 -witness
 -cause
Not sensitive to GWs, so won’t mistakenly identify a true 
event as a glitch

Can we use all >200k aux channels?

Independent corroboration

Information about origin not just diagnostics

Glitches 

Generally identified via excess power methods on the time 
frequency plane

 OmegaScan (J. Rollins thesis –Columbia U., 2010)

 Omicron (F. Robinet et al, 2015)



The binary classification problem
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Glitch identification from auxiliary channels using time series data

The binary classification problem
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Channel 
reduction

Feature 
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Normalization Model
Prediction 

(glitch or not)

Observation Model
Categorical 
prediction

• Data at time 𝑡: glitch (1) or not (0)?

• Our pipeline:

Colgan, Robert E., K. Rainer Corley, Yenson Lau, Imre Bartos, John N. Wright, Zsuzsa Márka, and Szabolcs Márka. "Efficient 
gravitational-wave glitch identification from environmental data through machine learning." Physical Review D 101.10 (2020): 102003.



Feature extraction

• 3 windows around 𝑡0 to capture surrounding behavior

• 𝜇𝑖 and 𝜎𝑖: mean and standard deviation over window 𝑤𝑖

• 10 features per channel at each time:
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𝜇−1 𝜇0 𝜇1 𝜇1 − 𝜇−1 𝜇0 −
𝜇1 + 𝜇−1

2

𝜎−1 𝜎0 𝜎1 𝜎1 − 𝜎−1 𝜎0 −
𝜎1 + 𝜎−1

2
Colgan, Robert E., K. Rainer Corley, Yenson Lau, Imre Bartos, John N. Wright, Zsuzsa Márka, and Szabolcs Márka. "Efficient gravitational-

wave glitch identification from environmental data through machine learning." Physical Review D 101.10 (2020): 102003.



Elastic net logistic regression model – Test Results

21Colgan, Robert E., K. Rainer Corley, Yenson Lau, Imre Bartos, John N. Wright, Zsuzsa Márka, and Szabolcs Márka. "Efficient gravitational-
wave glitch identification from environmental data through machine learning." Physical Review D 101.10 (2020): 102003.

Different glitch 
subsets based on 
Omicron parameters



Can we learn the behavioral signatures in auxiliary 
channels that give rise to glitches in the GW strain?
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Figure from D Davis et al, 2021

Previously: 

Some channels have shorter or longer timescale 
correlations with certain types of glitches.
Some channels might consistently behave in a specific 
pattern before (or after) a glitch, but there is no reason to 
suspect it would be the same such pattern for all of 
them—or that such patterns could easily be captured by 
the features we happened to select

Hand-designed, inflexible features: probably suboptimal

Feature Learning: 

Recent ML progress driven by learned representations, 
end-to-end models trained on raw data

Features should capture most useful properties of raw data 
behavior



Architectural Optimization and Feature Learning 
for High-Dimensional Time Series Datasets

Colgan, Robert E., Jingkai Yan, Zsuzsa Márka, Imre Bartos, Szabolcs Márka, and John N. Wright. "Architectural Optimization and Feature 
Learning for High-Dimensional Time Series Datasets” arXiv:2202.13486 2022
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The 5 mean-based features from our previous study 
visualized as convolutional filters

Convolution: measures similarity between 
two signals

Convolutional Neural Networks: learn 
convolutional filters from raw data, then 
aggregate for decision

Especially well-suited to data with temporal 
or spatial structure

Images
Time series (e.g. LIGO channels)

Similar training to classical ML methods
Use labeled data to compute model error
Gradient descent
But more parameters to optimize



Deeper models
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Colgan, Robert E., Jingkai Yan, Zsuzsa Márka, Imre Bartos, Szabolcs Márka, and John N. Wright. "Architectural Optimization and Feature 

Learning for High-Dimensional Time Series Datasets” arXiv:2202.13486 2022

Increased depth consistently shown to improve 
performance over equivalent size shallower models



How can these methods be useful in investigating 
instrumental/environmental origin of glitches?
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Strain-independent glitch verification
Auxiliary channels not astrophysically sensitive
Reduce likelihood of misidentifying a true event as 
a glitch

Channel selection
Which channels are most often associated with 
glitches?
Sparsity: identify a few tens to hundreds out of 
200,000+

Learned features
Behavioral signatures in auxiliary channels?

Individual glitch analysis
Interpretable model indicates which channels 
contribute most to individual classifications

Application example to specific glitch type =>

“Scattered Light”
Very prevalent at Livingston site
Wide arches in low-frequency band
Previously observed to correlate with 
 increased microseismic activity (0.03-0.5 Hz)
Very high rate on 12/1/2019

Colgan, Robert E., Zsuzsa Márka, Jingkai Yan, Imre Bartos, John N. Wright, and Szabolcs Márka. "Detecting and Diagnosing 
Terrestrial Gravitational-wave Mimics Through Feature Learning." arXiv:2203.05086 2022



Applying our models

Train slightly modified LF (flat) model to distinguish 
between “Scattered Light” and “no glitch” (of any type)

Scattered Light => GravitySpy

No glitch => Omicron

97.1% test accuracy

98.4% true positive rate

95.8% true negative rate

25 of 39,147 nonzero channels selected

SUS-ETMX_L2 OSEM

SUS: suspension system

ETMX: X arm end test mass

L2: penultimate stage (immediately above test mass)

OSEMAC: Optical Sensing and ElectroMagnetic ACtuator

Colgan, Robert E., Zsuzsa Márka, Jingkai Yan, Imre Bartos, John N. Wright, and Szabolcs Márka. "Detecting and Diagnosing 
Terrestrial Gravitational-wave Mimics Through Feature Learning." arXiv:2203.05086 2022
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Interpretation
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OSEM L2 
(x4)

Laser beam 
(incoming from right)

Reflective 
gold traces

Top 4 channels: L1:SUS-
ETMX_L2_WD_OSEMAC

Also see Soni, S., et al. "Reducing scattered light in LIGO’s third observing 
run." Classical and Quantum Gravity 38.2 (2020): 025016.

Image based on LIGO document G1100866 (2011).



Template –based searches are limited by

LIGO noise
 non-Gaussian
 time-varying noise distribution 

Density and coverage issues in the template bank



The Detection Problem and Matched Filtering

The parametric detection problem
𝐻0:  𝒙 = 𝒛
𝐻1:  𝒙 = 𝒔𝜸 + 𝒛 for some 𝒔𝜸 ∈ 𝑆Γ

MF decision rule

𝛿 𝒙 = 1 iff max
𝜸∈Γ

𝒙, 𝒔𝜸 > 𝜏

MF searches in GW detection use 
increasingly denser sampling 
(millions of waveforms)
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𝒔𝜸  - astrophysical signal

𝒛 - noise (with distribution ρ0)
𝒔𝜸 ∈ 𝑆Γ - signal belongs to a 

parametric family of signals
γ    - masses, orbits, and spins, etc.

For a single target signal 
𝐻0:  𝒙 = 𝒛
𝐻1:  𝒙 = 𝒔 + 𝒛

MF decision rule
𝛿 𝒙 = 1 iff 𝒙, 𝒔 > 𝜏



MF Is a Particular NN

• MF with a given set of templates can be 
constructed analytically as an equivalent NN.

• MNet-Shallow
• Exact replication of MF.

• MNet-Deep
• Replaces the “max” operation with a specially 

designed deep ReLU network.

• Advantages: more flexible and can handle a 
wider range of distributions.



NN Can be Further Improved by Training

• We have constructed NNs that are initialized to be equivalent to MF. 

• They can be further improved by training on data.

• Neyman-Pearson scenario (prior given)
• With certain loss functions, the NN training process is aimed at learning the 

statistically optimal decision rule.



Experimental Results
• LIGO GWOSC O2 public data, 8/1/2017 — 8/25/2017.

• Synthetic waveforms
• IMRPhenomD, mass 40~50 𝑀⨀, no spin, plus polarization.

• SNR=9. Two panels below show the same curves with different axis ranges.



Experiments: Two-Layer

LIGO O2 public data, synthetic injections, SNR=9. Compare error rates at different complexities.

Demonstrated hierarchical detection networks that improve accuracy of search, while significantly reducing 

search complexity, resulting in efficient detection

„Boosting the efficiency of parametric detection with hierarchical neural networks”

Hierarchical Detection (Neural)Networks and Complexity
Yan et al PRD 106.063008

Experiments: Multi-Layer

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.106.063008
https://journals.aps.org/prd/pdf/10.1103/PhysRevD.106.063008


TpopT (TemPlate OPTimization)

• Leverage the geometric properties of the signal in order avoid the majority of unnecessary templates.
• Realization: Riemannian gradient descent for TpopT is exponentially more efficient than MF
• Treats the iterations of an optimization method as layers of a neural network – trainable
• Significantly improved complexity-accuracy tradeoffs



Nonparametric TpopT extension 

Example:

Handwritten

Digit Recognition Case

◦

Task: Detect the digit '3' from all other digits

4 7 13 16
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Jingkai Yan, Shiyu Wang et al., arXiv:2310.10039



Summary:  INTERPRETABILITY

The LIGO detectors and their data represent highly complex engineered 
systems and are inspiring new ML models and methods

-- We shown applications involving high-dimensional data to find the 
experimental basis of noise artifacts

-- Gravitational wave data has inspired theoretical analyses of deep learning

 neural network and MF equivalence

 complexity and accuracy tradeoff

Applications beyond GW science



Hyperparameter optimization

• Validation dataset to choose best 𝛼, 𝜆

• Grid search

• Training set: 7,500 glitches, 7,500 glitch-free

• Validation set: 2,500 glitches, 2,500 glitch-free

41
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