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L Introduction

Introduction:
Black hole evaporation and quadratic gravity
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L Introduction
LPhysical motivation

Why black hole evaporation? - Semiclassical gravity

\sss

CIassmaI curved spacetlme + Quantum Field Theory

I

Black hole evaporation
Fundamental requirement: E < EQuantum Gravity
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L Introduction
L Physical motivation

Why black hole evaporation? - Information paradox

Information is accessible Information is not accessible Information is lost

Final stages of evaporation =  Tgy — 00 ==  E ~ EQuantum Gravity’
Solution: quantum corrections for gravity?
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L Introduction
LPhysical motivation

Why quadratic gravity? - Wilsonian approach

Non-renormalizable theory = effective field theory at low energies

Tw_r=3S9

C1
Theory space

C3...Cp, s e

Ieff = /d4x\/ —& E4C1 + E2C2R + C3R2 + C4RNVR/1,V + C5RMVpUR,u,Vp(7 + %Rs + ...
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L Introduction
LThe theory in exam

Quadratic gravity: a classical model for quantum corrections

§5=2, m=0
IQG:/d4x¢fg[yR+6R2—aCW""CWpUerQ} $=0, my=~/63
5:27 m%:7/2a

PRO: general, IR limit of fundamental theories, renormalizable
K. Stelle (1977), B. Zwiebach (1985)

CON: negative energy states = non-unitary theory

Fundamental assumption!!!

Classical solutions as first quantum corrections
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity

LBlack holes in quadratic gravity

Black holes in quadratic gravity:
Old and new solutions
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LBlack holes in quadratic gravity

LSymmetries and boundary conditions

Symmetries and weak field limit
Staticity, spherical symmetry:

ck2:—4ﬂﬂd¥—%fti%—ﬁd92
f(r)

Asymptotic flatness (isolated objects):
K. Stelle (1978), A. Bonanno and S.S. (2019)

2 M —mor
h(r) ~1— T+25;e
2 M —mor
f(r) ~1= =24 S (1 +mr)
Total (ADM) mass: M, Yukawa charge: S5
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LBlack holes in quadratic gravity

LSymmetries and boundary conditions

Event horizon: internal boundary

Series expansion around horizon radius ry:
A. Perkins et al. (2015)

h(r)=hy(r—ru)+> ho(r—ry)"

n=2
Fr)=A(r—rm)+ > falr—rm)"
n=2
Hawking: Tay = L /hifi, Wald: Sgy = 1672~ (rﬁ, + 50— fer))
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
LBlack holes in quadratic gravity

LSymmetries and boundary conditions

Singularity: behaviour close to the origin

Series expansion around origin:
A. Perkins et al. (2015)

h(r):rtzhtJrnrn t:“mw
n=0 r—0 dlog(r)
0 = . dlog(f(r))
— n = | — =2 /7
f(r) = rS;) fsnr = dlog (r)
Divergent metric: t = —1, s = —1, Vanishing metric: t =2, s = -2
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LBlack holes in quadratic gravity
LNumerical methods

Numerical methods: shooting method

_____ h(’]") = 1_ % +2‘5,2 e—:vu
""" f(?f")z 1- ﬂ+5‘2* e (1+7’n;27-)

........ h(r) = hi(r =)+ hy (r =) +

,,,,,,, Fr)=flr=rg)+ h(r-ry)* +

— ()
— J(n)

,,,,,, (r) = hy '+ By 1
ffffff )= o a7 4
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LBlack holes in quadratic gravity

L Black hole solutions

Properties of black holes in quadratic gravtity
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L_Black hole crossroads

Black hole crossroads:
Possible directions for evaporation
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L_Black hole crossroads

L Scales for transition

What crossroads? - Schwarzschild/non-Schwarzschild black holes

of e : : My, ~ 4.8\/a107 38 M,
-2 - e ~ 1.4y/a1073 km
4 ToH.r ~ 1.3a7Y210%0K

So~ .
-6 1 a < 109 & Gacchini 2016)
8 M, < 4.8-1078M,
rer < 1.4-107"km

s W 05 10 15 20 2.5 Ten > 13K
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L_Black hole crossroads

L Exploring possibilities
Exploring possibilities: dynamical stability
Metric perturbation:
8uv = Buv(r) + €6gu(r, t) = B + € (hyw + Suv + tuw)

Reducing the degrees of freedom: t,, = t,.(¢)
A. Held and J. Zhang (2023)

Regge-Wheeler-Zerilli-like equation:

2 & ,
<o'lt2 - dr*2> PV =0
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L Exploring possibilities
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L_Black hole crossroads

L Standard evaporation

First direction: standard evaporation
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L_Black hole crossroads

LStandard evaporation

Standard evaporation: 0 T ;
- adiabatic approximation
—> requires stability S10°F
- emission of standard particles Mo
dM(t) T2 M,
dt BH _1013_ 8
A’ftr_
S My
. . -10° M,
=—> evaporate in Yukawa attractive BHs My _ 5
M, 3
2 _ 25 L L L L L
M(tnow) ~ —10 06M® t l00.1 1 10 100 1000 10* 10°

i/t
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L_Black hole crossroads

LStandard evolution

Second direction: standard evolution
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L_Black hole crossroads

L Standard evolution

Large Schwarzschild black hole

Dz/}m/ + 2R'upl/crww/ = m%wm/

rH = rtr

=
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transition into non-Schwarzschild black hole!

small Schwarzschild black hole

a—/mi—wir
Ve ~ elmie
r

e—mar

unsuppressed perturbation 1 ~

(Evidence at non-linear level)
W. E. East and N. Siemonsen (2023)
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L_Black hole crossroads
L Ghost instability

Third direction: ghost instability
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L_Black hole crossroads
L Ghost instability

Ghost phase transition: strength of instability

10
Greater instability = faster growth

1
—mar -2
quNeﬂt 5M+ekf5se o(t,0)"°

r r m W
A>n 1078
10"

200 400 600 800

= higher probability of transition into

Yukawa repulsive black holes? it
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L_Black hole crossroads

L Unstable evaporation

Following the third direction: unstable evaporation

No adiabatic expansion = full time-dependent evolution?

Asymptotic flatness (still isolated objects):

2M(t 1
F(rt) ~1— r() 2 /drr2/ dsdr Gy (r,£,5,7)C (Tiw)
M(t) is the time-dependent ADM (and Misner-Sharp, and Hawking-Hayward) mass
1
(07 + m3) 0 M(t) = g fim r*Te(r,t)

o r—0o0
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L_Black hole crossroads
L Unstable evaporation

Stability in instabilities: nature of the singularity

4NN

Equations for t and s in x = —log(r):
dt 1 5
— =—(ts+4s+t>+2t+4
1 pltstas+ti+2t+4)
t
ds

1
As 1 (02p 24 o2
dx 2(t—2)(5 et

+8s—t3+3t2+8)
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L_Black hole crossroads

L Unstable evaporation

Unstable evaporation:

- exponential growth of perturbations
= Ty oxe’t

- emission of ghost particles
— Ttr >0

Endpoint is a static black hole with ry — 0

= te—ty ~ 107 as < 107155
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Assumption!
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L Conclusions

Conclusions

Simple and conservative approach:

Information paradox: semiclassical gravity breaks down at high energies

= inclusion of first order quantum corrections to gravity

Many strong (but sensible) assumptions:

- classical solutions of quadratic gravity as first-order quantum corrections
- Schwarzschild = Yukawa repulsive phase transition

- no large deviations from static solutions

26/ 28



Black holes at a crossroads during the late stages of evaporation in quadratic gravity

L Conclusions

Conclusions

Consequences: U-turn for black hole evaporation

General relativity: Quadratic gravity:
- mass and entropy decrease — 0 - mass and entropy increase — My, S
- temperature increases — 0o - temperature decreases — 0
- endpoint is flat space - endpoint is a naked singularity

Information paradox

Naked singularity
Singularity problem

27/ 28



Black holes at a crossroads during the late stages of evaporation in quadratic gravity

L Conclusions

What to expect?

Hope you will tell me, thank’s for the attention!
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L Conclusions

Exploring possibilities: thermodynamical spontaneity

Total thermodynamical entropy:

oM oM
e T T T Ty
AM
ASior = — ASpgH + Tiu
=1-— M—T,
So Tuso uSeH)
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Black holes at a crossroads during the late stages of evaporation in quadratic gravity
L Conclusions

A no-(scalar) hair theorem and ghosts

Cuvpo is traceless — trace of vacuum e.om. is (O—mg) R=0
staticity
asymptotic flatness = R =0 in all spacetime

i W. Nelson (2010), A. Perkins et al. (2015)
presence of event horizon

R2 term is irrelevant = CHP? Cppe term is crucial (ghosts!)
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L Conclusions

Why quadratic gravity? - Perturbative approach

P e
G d*xv/—g R
",

/ d*xy/—g [aR? + bR™ Ry, + ¢ R*" Rp0)

/ d*xv/—g [d RMPTR PR s +eRMR, PR, + ]
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L Conclusions

Why quadratic gravity? - Perturbative approach

/ d*xv/—g R

/ d*xy/—g [aR? + bR™ Ry, + ¢ R*" Rp0)

/ d*xv/—g [d RUPTR VR s+ eRMWR,PR,, + ..
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L Conclusions

Why quadratic gravity? - Perturbative approach

G / d4xx/—g R

Quadratic Gravity

/ d*xy/—g [aR? + bR™ Ry, + ¢ R*" Rp0)

/d“x\ﬁ dRWPTR R 5+ e RR,PR,, + ]
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