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Introduction:
Black hole evaporation and quadratic gravity
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Introduction

Physical motivation

Why black hole evaporation? - Semiclassical gravity

Classical curved spacetime + Quantum Field Theory

⇓

Black hole evaporation

Fundamental requirement: E � EQuantum Gravity
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Introduction

Physical motivation

Why black hole evaporation? - Information paradox

Information is accessible Information is not accessible Information is lost

Final stages of evaporation =⇒ TBH →∞ =⇒ E ∼ EQuantum Gravity ?

Solution: quantum corrections for gravity?
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Introduction

Physical motivation

Why quadratic gravity? - Wilsonian approach

Non-renormalizable theory =⇒ effective field theory at low energies

Ieff =

∫
d4x
√
−g

E 4c1 + E 2c2R︸ ︷︷ ︸
GR

+ c3R
2 + c4R

µνRµν + c5R
µνρσRµνρσ︸ ︷︷ ︸

QuadraticGravity

+
c6
E 2

R3 + . . .


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Introduction

The theory in exam

Quadratic gravity: a classical model for quantum corrections

IQG =

∫
d4x
√
−g
[
γ R + β R2 − αCµνρσCµνρσ + χG

]
S = 2, m = 0

S = 0, m2
0 = γ/6β

S = 2, m2
2 = γ/2α

PRO: general, IR limit of fundamental theories, renormalizable
K. Stelle (1977), B. Zwiebach (1985)

CON: negative energy states =⇒ non-unitary theory

Fundamental assumption!!!

Classical solutions as first quantum corrections
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Black holes in quadratic gravity

Black holes in quadratic gravity:
Old and new solutions
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Black holes in quadratic gravity

Symmetries and boundary conditions

Symmetries and weak field limit

Staticity, spherical symmetry:

ds2 = −h(r)dt2 +
dr2

f (r)
+ r2dΩ2

Asymptotic flatness (isolated objects):
K. Stelle (1978), A. Bonanno and S.S. (2019)

h(r) ∼ 1− 2M

r
+ 2 S−2

e−m2 r

r

f (r) ∼ 1− 2M

r
+ S−2

e−m2 r

r
(1 + m2 r)

Total (ADM) mass: M, Yukawa charge: S−2
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Black holes in quadratic gravity

Symmetries and boundary conditions

Event horizon: internal boundary

Series expansion around horizon radius rH :
A. Perkins et al. (2015)

h(r) = h1 (r − rH) +
∞∑

n=2

hn (r − rH)n

f (r) = f1 (r − rH) +
∞∑

n=2

fn (r − rH)n

Hawking: TBH = 1
4π

√
h1f1, Wald: SBH = 16π2γ

(
r2H + 2

m2
2

(1− f1rH)
)
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Black holes in quadratic gravity

Symmetries and boundary conditions

Singularity: behaviour close to the origin

Series expansion around origin:
A. Perkins et al. (2015)

h(r) = r t
∞∑

n=0

ht+nr
n

f (r) = r s
∞∑

n=0

fs+nr
n

=⇒

t = lim
r→0

d log (h(r))

d log (r)

s = lim
r→0

d log (f (r))

d log (r)

Divergent metric: t = −1, s = −1, Vanishing metric: t = 2, s = −2
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Black holes in quadratic gravity

Numerical methods

Numerical methods: shooting method
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Black holes in quadratic gravity

Black hole solutions

Properties of black holes in quadratic gravtity
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Black hole crossroads

Black hole crossroads:
Possible directions for evaporation
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Black hole crossroads

Scales for transition

What crossroads? - Schwarzschild/non-Schwarzschild black holes

Mtr ∼ 4.8
√
α10−38M�

rH,tr ∼ 1.4
√
α10−37km

TBH,tr ∼ 1.3α−1/21030K

α < 1060 B. Giacchini (2016)

Mtr < 4.8 · 10−8M�

rH,tr < 1.4 · 10−7km

TBH,tr > 1.3K
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Black hole crossroads

Exploring possibilities

Exploring possibilities: dynamical stability

Metric perturbation:

Reducing the degrees of freedom: tµν → tµν(ϕ)
A. Held and J. Zhang (2023)

Regge-Wheeler-Zerilli-like equation:(
d2

dt2
− d2

dr∗2

)
ϕ+ V (r∗)ϕ = 0
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Black hole crossroads

Exploring possibilities

Exploring possibilities: stability at the crossroads
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Black hole crossroads

Standard evaporation

First direction: standard evaporation
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Black hole crossroads

Standard evaporation

Standard evaporation:

- adiabatic approximation

=⇒ requires stability

- emission of standard particles

=⇒ dM(t)

dt
∼ −σT 2

BH

=⇒ evaporate in Yukawa attractive BHs

M(tnow ) ∼ −10206M� !!!!!
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Black hole crossroads

Standard evolution

Second direction: standard evolution
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Black hole crossroads

Standard evolution

Large Schwarzschild black hole =⇒ small Schwarzschild black hole

�ψµν + 2Rµρνσψ
µν = m2

2ψµν =⇒ ψtt ∼ eiωt e
−
√

m2
2−ω2 r

r

rH = rtr =⇒ ω = 0 =⇒ unsuppressed perturbation ψtt ∼ e−m2 r

r

=⇒ transition into non-Schwarzschild black hole! (Evidence at non-linear level)
W. E. East and N. Siemonsen (2023)
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Black hole crossroads

Ghost instability

Third direction: ghost instability
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Black hole crossroads

Ghost instability

Ghost phase transition: strength of instability

Greater instability =⇒ faster growth

ψµν ∼ eηt δM

r
+ eλt δS

e−m2 r

r

λ >η

=⇒ higher probability of transition into
Yukawa repulsive black holes?
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Black hole crossroads

Unstable evaporation

Following the third direction: unstable evaporation

No adiabatic expansion =⇒ full time-dependent evolution?

Asymptotic flatness (still isolated objects):

f (r , t) ∼ 1− 2M(t)

r
+

1

r

∫
dr r2

∫
dsdτ G(�−m2

2)
(r , t, s, τ) C (Tµν)

M(t) is the time-dependent ADM (and Misner-Sharp, and Hawking-Hayward) mass(
∂2t +m2

2

)
∂tM(t) =

1

8α
lim

r→∞
r2Ttr (r , t)
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Black hole crossroads

Unstable evaporation

Stability in instabilities: nature of the singularity

Equations for t and s in x = − log(r):

dt

dx
=

1

2

(
t s + 4s + t2 + 2t + 4

)
ds

dx
=

1

2(t − 2)

(
2s2t − s2 + st2 +

+ 8s − t3 + 3t2 + 8
)
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Black hole crossroads

Unstable evaporation

Unstable evaporation:

- exponential growth of perturbations

=⇒ Ttr ∝ eν t

- emission of ghost particles

=⇒ Ttr > 0

Assumption!

Endpoint is a static black hole with rH → 0

=⇒ te − ttr ∼ 10−45
√
α s < 10−15s
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Conclusions

Conclusions

Simple and conservative approach:

Information paradox: semiclassical gravity breaks down at high energies

=⇒ inclusion of first order quantum corrections to gravity

Many strong (but sensible) assumptions:

- classical solutions of quadratic gravity as first-order quantum corrections

- Schwarzschild =⇒ Yukawa repulsive phase transition

- no large deviations from static solutions
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Conclusions

Conclusions

Consequences: U-turn for black hole evaporation

General relativity:

- mass and entropy decrease → 0

- temperature increases →∞

- endpoint is flat space

Quadratic gravity:

- mass and entropy increase → Mf , Sf

- temperature decreases → 0

- endpoint is a naked singularity
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Conclusions

What to expect?

Hope you will tell me, thank’s for the attention!
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Conclusions

Exploring possibilities: thermodynamical spontaneity

Total thermodynamical entropy:

δStot = − δM

TBH
+
δM

TU

∆Stot = −∆SBH +
∆M

TU

∆Stot

S0
= 1− 1

TUS0
(M − TUSBH)
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Conclusions

A no-(scalar) hair theorem and ghosts

Cµνρσ is traceless =⇒ trace of vacuum e.o.m. is
(
�−m2

0

)
R = 0


staticity

asymptotic flatness

presence of event horizon

=⇒ R = 0 in all spacetime
W. Nelson (2010), A. Perkins et al. (2015)

R2 term is irrelevant =⇒ CµνρσCµνρσ term is crucial (ghosts!)
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Conclusions

Why quadratic gravity? - Perturbative approach
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