Synergies between IXPE and MAGIC observations of blazars

Elisa Prandini Padova University and INFN

Blazars

- Blazars: active galaxies with a relativistic jet pointing towards the observer
- Electromagnetic emission dominated by physical processes of accelerated particles in the jet (electrons+possibly hadrons)
- Classified according to the emission lines in the optical spectrum
 - FSRQ (strong lines, EW>5Å)
 - BL Lac objects
- BL Lacs further classified according to the synchrotron peak location of their SED

Blazars at the highest energies

VHE: very high energy emission, defined as energy > 100 GeV (2.4 x 10^25 Hz)

- VHE observations of blazars cover the decreasing part of the second SED peak.
- Interestingly, the VHE flux is fainter for bright objects, such as FSRQs (threshold effect)

TeVCAT: a catalogue for TeV-detected sources

- 5 GRBs
- 2 starburst galaxies
- 4 radiogalaxies
- **87 blazars**
 - 10 FSRQ
 - 77 BL Lac objects

TeVCAT: a catalogue for TeV-detected sources

http://tevcat2.uchicago.edu/

E. Prandini - IXPE and MAGIC synergies

TeVCAT: a catalogue for TeV-detected sources

First VHE gamma-ray blazars are also the first IXPEdetected blazars!

→ Not a coincidence:
 strong connection between
 IXPE and MAGIC targets
 (and physics)

http://tevcat2.uchicago.edu/

MAGIC Telescopes

- Two Imaging Atmospheric Cherenkov Telescopes
- La Palma, 2400 m asl
- Energy range: 60 GeV to several TeV (VHE: very high energy gamma rays)
- Limited Field of View (~3.5 degrees)

Observation strategy:

- Pointed observations
- Regular monitoring of known VHE emitters
- Search for new targets (also through ToO)

Detection technique

MAGIC studies on blazars

• <u>BL Lacs</u>

- Characterize the emission over time at different timescales
- Probe the jet properties and particle content: multi-zone SSC

MAGIC studies on blazars

• BL Lacs

- Characterize the emission over time at different timescales
- Probe the jet properties and particle content: multi-zone SSC

FSRQs

- Characterize the emission mostly in flaring states
- Constrain the size and location of the emitting region → probe fast variability
- Probe the jet properties and particle content: External Compton

Focus on Mkn 421

- Simplest model: SSC
- Both X-ray and VHE gamma rays: decreasing part of the peak

Focus on Mkn 421

- Simplest model: SSC
- Both X-ray and VHE gamma rays: decreasing part of the peak
- Broadband variability: need for simultaneous observations!

Focus on Mkn 421

- Simplest model: SSC
- Both X-ray and VHE gamma rays: decreasing part of the peak
- Broadband variability: need for simultaneous observations!
- Strong correlation: X-ray and VHE gamma rays

 \rightarrow Multi-zone emission model favored

MAGIC-IXPE combined observations of Mkn 421

E. Prandini - IXPE and MAGIC synergies

MAGIC-IXPE combined observations of Mkn 421

- 3 coordinated observations in 2022
- X-ray polarization larger than optical

E. Prandini - IXPE and MAGIC synergies

Spectral energy distribution during IXPE campaign (2022)

MAGIC-IXPE combined observations of Mkn 421

- 3 coordinated observations in 2022
- X-ray polarization larger than optical
- X-ray polarization angle: full rotation in June 2022

MAGIC observations

Mkn 421: MAGIC-IXPE connections

X-ray (Swift) -VHE: strong hint of correlation
→ Time interval: May-June 2022
→VHE co-spatial with X-ray

Strong connection between X-ray and VHE, pointing to a common origin (typical for HSPs) → Simultaneous coverage is crucial to probe the physics of the emitting region

Discrete correlation function Mkn 421 (X-ray – VHE)

Recent highlights: Mkn 501

Paper on MAGIC+IXPE simultanous observations in 2022 (MAGIC+ 2024)

• 3 IXPE pointings (Liodakis+ 2022, Lisalds+ 2024)

Polarization degree

- X-ray ~factor 2 higher than in optical
- Drop in polarization for IXPE-3

X-ray polarization angle

- In line with optical
- Parallel to radio jet orientation

Recent highlights: Mkn 501

Emission model

 Role of MAGIC: constrain the second zone properties, the same responsible for X-ray emission.

MAGIC blazars and the two zone leptonic model

Two-zone leptonic model (SSC + interaction component) proposed to interpret the data, including polarization

 TeV emission strongly connected with X-ray emission (same electron population)

(c) PKS 1424+240 (2015) (g) 1ES 1959+650 (high state) -92 -10 $\log \nu F_{\nu} [\operatorname{erg} \operatorname{cm}]$ $\log \nu F_{\nu} \left[\operatorname{erg} \operatorname{cm} \right]$ -11-12-13-13-14-14(d) 1ES 1727+502 (h) 1ES 2344+514 -9Ś 2 -10-10 $\log \nu F_{\nu} [erg cm]$ $\log \nu F_{\nu} [\operatorname{erg} \operatorname{cm}$ -11-12-12-13-13-14-142412161820222426 $28 \ 10$ 1214182022261014 1628 $\log \nu \,[\mathrm{Hz}]$ $\log \nu \,[\mathrm{Hz}]$ archival • OVRO • Tuorla * Swift-UVOT • Swift-XRT • Fermi-LAT • MAGIC one-zone — two-component (- - - blob - - - - core - - - - interaction)

MAGIC Coll. 2020

MAGIC & IXPE studied blazars

SEDs from mmdc Markarian Multiwavelength Data Center (https://mmdc.am/)

Insights on PG 1553+113

Goal: characterize the variability patterns at VHE (and MWL)

- MWL Data from 2014 to 2017
- Non uniform coverage
- Quasi-periodic oscillations in gamma-rays (hints in optical and radio)
- No QPOs in X-ray and VHE
- Optical polarization and EVPA monitored since 2015
 - Optical polarization up to 15%
 - Clear rotations

Insights on PG 1553+113

Intra-band correlations: complex interplay → <u>multi-zone model</u>

Band-1	Band-2	Spearman Coeff.	<i>p</i> -value	Panel
Optical	UV	0.94	4e-88	a
Optical	IR	0.90	2e-50	b
UV	HE γ -ray	0.66	3e-10	
Optical	HE γ -ray	0.63	2e-14	с
ŪV	VHE γ-ray	0.62	9e-08	
IR	HE γ -ray	0.61	1e-05	
X-ray	VHE γ -ray	0.60	6e-08	d
IR	UV	0.60	4e-06	
UV	X-ray	0.55	6e-18	e
Optical	X-ray	0.37	4e-08	f
HE γ -ray	VHE γ -ray	0.39	0.006	g
Optical	VHE γ -ray	0.35	2e-05	h
X-ray	HE γ -ray	0.32	0.006	i
IR	VHE γ -ray	0.26	0.09	
IR	X-ray	0.29	0.02	

E. Prandini - IXPE and MAGIC synergies

Insights on PG 1553+113

0.90

0.66

0.63

0.62

0.61

0.60

0.60

0.55

0.37

0.39

0.35

0.32

0.26

0.29

partially co-spatial.

h

C

d

e

f

g

h

2e - 50

3e - 10

2e - 14

9e - 08

1e - 05

6e - 08

4e - 06

6e - 18

4e - 08

0.006

2e - 05

0.006

0.09

0.02

Intra-band correlations: complex interplay

→ <u>multi-zone model</u>

Band-2

UV

IR

HE γ -ray

HE γ -ray

VHE γ -ray

HE γ -ray

VHE γ -ray

UV

X-ray

X-ray

VHE v-ray

VHE γ-ray

HE γ -ray

VHE γ -ray

X-ray

Band-1

Optical

Optical

Optical

UV

UV

IR

IR

UV

Optical

Optical

X-ray

IR IR

HE γ -ray

X-ray

0.010

Optical flux (ly)

0.012

0.8

X-ray flux (erg/cm²/s)

1.0

1.2

1e-10

0.014

52000

66000

55000

$\begin{array}{c} \begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$

E. Prandini - IXPE and MAGIC synergies

1.2

Confirmed by IXPE observations in 2023 revealing

an orphan optical polarization swing \rightarrow X-ray and

sp optically emitting regions are separate or, at most,

A look to the (near) future

- MAGIC + IXPE observations
 - New promising targets to test emission models
 - Monitoring of well known sources
- CTAO first telescopes in operation soon (LST1 already taking data!)
- Combined and multi-epoch observations are crucial to probe the emission models

The MAGIC Collaboration is open to external PI - Call for proposals late Summer (if interested, contact us in time!)

https://magic.mpp.mpg.de/public/magicop/

Conclusions

- **IXPE blazars** are sources of VHE gamma-rays
- In high-syncrotron peak blazars (HBLs), VHE photons are closely connected with X-ray emission and polarization: co-spatial.
- Role of VHE observations:
 - Spectrum reconstruction \rightarrow modelling
 - Lightcurve:
 - Time variability study → constrain the size of the gamma-ray emitting region
 - Intra-band correlation studies
- Future observations: monitoring + new sources

Thank you!

Backup slides

TeVCAT non-blazar sources

Name	RA	Dec	Type Tags 🔻	Distance	Catalog
GRB 221009A	19 13 03	+19 48 09	XGal,GRB,I	z=0.151	Default Catalog
GRB 201216C	01 05 28.88	+16 30 58.0	XGal,GRB,I	z=1.1	Newly Announced
GRB 190829A	02 58 10.51	-08 57 28.1	XGal,GRB,I	z=0.0785	Default Catalog
GRB 180720B	00 02 06.87	-02 55 05.2	XGal,GRB,l	z=0.654	Default Catalog
GRB 190114C	03 38 01.17	-26 56 46.73	XGal,GRB	z=0.4245	Default Catalog
3C 264	11 45 05.0	+19 36 23	XGal,AGN,F	z=0.021718	Default Catalog
NGC 1275	03 19 48.1	+41 30 42	XGal,AGN,F	z=0.017559	Default Catalog
M 87	12 30 47.2	+12 23 51	XGal,AGN,F	z=0.0044	Default Catalog
Centaurus A	13 25 30.3	-43 00 15	XGal,AGN,F	z=0.00183	Default Catalog
M 82	09 55 52.7	+69 40 46	XGal,*Brst	3900.0 kpc	Default Catalog
NGC 253	00 47 32.54	-25 17 25.4	XGal,*Brst	2500.0 kpc	Default Catalog

Mkn 421 MAGIC + IXPE + MWL

E. Prandini - IXPE and M

Mkn 421: hysteresis loops in NuSTAR data

- Two contiguous spectral hysteresis loops in opposite directions over a single exposure
- The first loop, in a **clockwise direction**, is likely the signature of <u>synchrotron cooling causing a</u> <u>delay of the lowenergy X-ray photons</u> with respect to the high-energy ones (soft lag).
- The subsequent **counter-clockwise loop** indicates a delay of the high-energy X-ray photons compared to the low-energy ones (hard lag), suggesting a <u>system observed at</u> <u>energies for which acceleration timescale is</u> <u>comparable to the cooling timescale</u>

Fig. 8: Log-parabola photon index α versus 3-7 keV and 7-30 keV flux as measured by *NuSTAR* during the third *IXPE* observation (*IXPE 3* period). The data are 1 hour binned and α is obtained by fitting a log-parabola function that has a fixed curvature parameter $\beta = 0.45$. The grey arrows show the direction of time, and the blue and red arrows in the middle of the panels depict the clockwise and counter-clockwise directions observed in the data, respectively.

Mkn 501

