HIERARCHICAL INFERENCE OF COSMOLOGICAL AND ASTROPHYSICAL POPULATION PROPERTIES FROM GRAVITATIONAL WAVE OBSERVATIONS AND GALAXY CATALOGS

Matteo Tagliazucchi

Ph.D. student @ University of Bologna. Supervisors: M. Moresco, D. Bonacorsi

Pescara - July 11, 2024

17th Marcel Grossmann Meeting

Study funded by the European Union - NextGenerationEU, in the framework of the project "National Centre for HPC, Big Data and Quantum Computing" (HPC CN00000013 – CUP J33C22001170001).

GW AS A NEW COSMOLOGICAL PROBE

GW from compact binaries coalescences (CBC), e.g BBH, BNS, BH-NS mergers, are *standard sirens* (Schutz, 1986; Holz et al. 2005; Moresco et al. 2022).

$$h(t) = \frac{\mathcal{M}_{\text{det}}^{5/3} f_{\text{det}}^{2/3}(t)}{d_L} F(\text{angles}) \cos\left(\Phi(t)\right)$$

 $\implies h(t) \propto 1/d_L$: possible to measure the luminosity distance to the source without any intermediate distance ladder calibrator (only GR has been assumed).

> Possible to constrain H_0 , the integrated H(z) or modified GW propagation through the distance-redshift relation

$$d_L(z) = \frac{(1+z)}{H_0} \int_0^z \frac{c \mathrm{d}z}{E(z;\lambda_{\mathrm{cosmo}})}$$

if the redshift of the source is known.

▶ Binary chirp mass and redshift are completely degenerate: $M_{det} = (1 + z)M_{src} \implies$ the redshift cannot be measured from GW data alone.

INFERRING THE REDSHIFT - BRIGHT SIRENS

Mainly three ways:

- by detecting an EM counterpart (bright sirens) (Holz et al. 2005; Nissanke et al. 2010);
- by using information from a catalog of possible hosts, usually a galaxy catalog (statistical dark sirens);
- 3. by exploiting features in the source-frame mass distribution (**spectral dark sirens**).

Pros:

- \Rightarrow Very precise.
- ⇒ With dozens of brights sirens it could be possible to obtain a few % measurement of H_0 (Chen et al. 2024).

Cons:

- \Rightarrow Difficult to constrain other cosmological parameters.
- \Rightarrow Need at least one neutron star.
- \Rightarrow Only **GW170817** (Abbott et al. 2017) out of \sim 200 events so far.

INFERRING THE REDSHIFT - STATISTICAL DARK SIRENS

Mainly three ways:

- by detecting an EM counterpart (bright sirens);
- by using information from a catalog of possible hosts, usually a galaxy catalog (statistical dark sirens) (Schutz, 1986; Gair et al. 2023);
- **3**. by exploiting features in the source-frame mass distribution (**spectral dark sirens**).

INFERRING THE REDSHIFT - SPECTRAL DARK SIRENS

Mainly three ways:

- 1. by detecting an EM counterpart (bright sirens);
- by using information from a catalog of possible hosts, usually a galaxy catalog (statistical dark sirens);
- by exploiting features in the source-frame mass distribution (spectral dark sirens) (Chernoff et al. 1993; Del Pozzo, 2012; Ezquiaga et al. 2022).

$$m_{i,\text{det}} = (1+z) m_{i,\text{src}} = \frac{d_L H_0}{\int_0^z \frac{c dz}{E(z;\lambda_{\text{cosmo}})}} m_{i,\text{src}}$$

- $m_{i \text{ det}}$ and d_L are observed. If $m_{i \text{ src}}$ is known, it is possible to constrain H_0 and λ_c .
- Presence of features in the source-frame mass distribution can be used to break the degeneracy <u>at the statistical level</u>.

From Abbott et al. 2023

COMBINING DARK SIRENS METHODS

It is natural to seek a unified Dark Sirens method:

ICAROGW 2.0 (Mastrogiovanni et al. 2024)

- 1. both the redshift distribution obtained from a galaxy catalog and the mass distribution describes population properties in the source frame ("population priors");
- 2. the galaxy catalog method relies on assumptions about the population model, and can therefore be interpreted as an extension of the spectral sirens method;
- 3. it is further important to marginalize over population parameters to get robust results.

Mainly three codes that unifies the dark sirens methods and jointly infer cosmological and population parameters:

From Gray et al. 2023

THE CHIMERA PIPELINE

CHIMERAC (Combined Hierarchical Inference Model for Electromagnetic and gRavitational-wave Analysis): a novel Python code for the joint inference of cosmology and population properties of GW sources from GW data and galaxy catalogs. Borghi et al. 2024

Workflow:

- Pre-computation of integration redshift grids and catalog probability given the cosmological priors.
- **2**. For each GW event:
 - **pixelization** of the localisation area;
 - 3D **KDE** estimate of the GW probability, weighted by the mass distribution, within the localization volume;
 - pixel-by-pixel **integration in redshift** of the KDE times the probability of having an host galaxy and sum of all the integrals;
- 3. Multiplication of the posterior of each event.

4. Monte Carlo approximation of the selection bias. https://github.com/CosmoStatGW/CHIMERA

MOCK CATALOGS

- Mock galaxy catalog: luminosity-complete subsample of the MICE Grand Challenge light-cone simulation (Fosalba et al. 2015) with a uniform in comoving volume density distribution.
 - ⇒ Cut in luminosity corresponds to $\log_{10}(M/M_{\odot}) > 10.5;$
- Mock GW events drawn from fiducial population distributions:
 - \Rightarrow Cosmology: flat Λ CDM with

$$H_0 = 70 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}, \,\Omega_{m,0} = 0.25.$$

- \Rightarrow Mass distribution: Power Law + Gaussian peak
- \Rightarrow Rate evolution: Madau-like

Fisher matrix-based computation of SNR and posterior samples using GWFAST (Iacovelli et al. 2022) and two configurations:

- \Rightarrow **O4-like:** L1, H1, Virgo, KAGRA at O4 design sensitivity.
- \Rightarrow **O5-like:** as before + LIGO India at O5 design sensitivity.

Cut in SNR to select the 100 best events over 1 year of observation.

04 vs 05

Three MCMC analyses using the EMCEE sampler (Foreman-Mackey et al. 2013) for each GW catalog (6 runs in total):

- without the galaxy catalog (pure spectral sirens);
- 2. using the galaxy catalog with "photometric" errors, $\sigma_z/(1+z) = 0.05$;
- 3. using the galaxy catalog with "spectroscopic" errors, $\sigma_z/(1+z) = 0.001$.

The better sensitivity of O5 and the cut at higher SNR imply:

- \Rightarrow better localization of GW events and so a more precise measurement of H_0 ;
- \Rightarrow improved constraints on population parameter.

CONSTRAINTS ON H_0

	Spectral	Full z _{phot}	Full <i>z</i> _{spec}	
O4-like	$64^{+32}_{-23}(43\%)$	$76^{+16}_{-12}(18\%)$	$75.3^{+5.2}_{-4.9}(7\%)$	
O5-like	$55^{+20}_{-16}(32\%)$	$73.3^{+7.2}_{-6.3}(9\%)$	$70.24^{+0.76}_{-0.81}(1\%)$	

- Possible to achieve 1% accuracy on H₀ in the O5 configuration with just 100 GW events and a complete spectroscopic galaxy catalog.
- In O5, using a photometric catalog degrades the accuracy to 9%.
- Constraint obtained with O4+spectroscopic catalog (7%) better than those with O5+photometric catalog.
- Spectral sirens cases not competitive with such a number of events (43%, 32%).
- Results robust since obtained while marginalising over population parameters.

CONSTRAINTS ON POPULATION PARAMETERS

Constraints on population parameters dominated by the number of events considered, but including galaxies helps in reducing the correlation between H_0 and some population parameters.

TOWARDS 3G DETECTORS

With current data, ~ 90 GW events, it requires 10^5 CPU hours for a complete population fit.

3G GW observatories (ET, CE, LISA ...) will detect $\sim 10^5$ events per year.

It will be possible to reconstruct population properties, constrain the expansion history, and test modify gravity.

The **computational cost scales linearly** with the number of GW events: it's crucial to improve the pipelines to accommodate the large amount of future data.

IMPROVING CHIMERA

Main bottleneck: KDE evaluation ($\sim 82\%$ of total time spent)

$$t_{\text{KDE}} \sim \mathcal{O}\left(N_{\text{events}} \times N_{\text{pix,event}} \times N_{\text{samples}} \times N_{\text{z-grid}}\right)$$

Improvements:

► 3D KDE factorization:

$$p_{gw}(z, RA, DEC|\lambda) = p_{gw}(RA, DEC)p_{gw}(z|\lambda)$$

- ► KDE with binned data.
- Alternative density estimate algorithms (histogram, ASH, ...).
- Porting on GPU mass, rate and cosmology functions (to be optimised).

SUMMARY AND ONGOING PROJECTS

We developed a new code able to jointly constrain cosmological and population parameters from GW data with or without galaxy catalogs.

Different ongoing projects using CHIMERA:

- 1. Improving the pipeline and better porting on GPUs for a flagship use case of the ICSC National Centre for HPC
- 2. Mock Data Challenge between the various codes of hierarchical inference
- 3. Extension of CHIMERA to include modified gravity propagation (M. Fiebig, MSc student @ University of Bologna)
- 4. Extension of CHIMERA to real GW data and galaxy catalogs (G. Cuomo, MSc student @ University of Bologna)
- 5. Explore the synergies between galaxy evolution and GW astronomy (N. Borghi, post-doc @ University of Bologna, main code developer)

Thank You for Your Attention!

BACKUP - CATALOGS PROPERTIES

Selection effects: more massive BBH are more likely to be detected as they produce louder GW signals.

To reconstruct the true underlying population distributions it is necessary to correct this bias.

BACKUP - MCMC PARAMETERS AND PRIORS

Parameter	Description	Fiducial Value	Prior	
	Cosmology (flat Λ CDM)			
H_0	Hubble constant [km/s/Mpc]	70.0	$\mathcal{U}(10.0,200.0)$	
$\Omega_{m,0}$	Matter energy density	0.25	Fixed	
	Rate evolution (Madau-like)			
γ	slope at $z < z_p$	2.7	$\mathcal{U}(0.0, 12.0)$	
κ	slope at $z > z_p$	3	$\mathcal{U}(0.0, 6.0)$	
<i>z</i> _p	peak redshift	2	$\mathcal{U}(0.0, 4.0)$	
	Mass distribution (PowerLaw+Peak)			
α	(primary) slope of the power law	3.4	$\mathcal{U}(1.5, 12.0)$	
eta	(secondary) slope of the power law	1.1	$\mathcal{U}(-4.0, 12.0)$	
δ_m	(primary) smoothing parameter $[M_{\odot}]$	4.8	$\mathcal{U}(0.01,10.0)$	
$m_{\rm low}$	lower value $[M_{\odot}]$	5.1	$\mathcal{U}(2.0, 50.0)$	
m _{high}	upper value $[M_{\odot}]$	87.0	$\mathcal{U}(50.0,200.0)$	
$\mu_{ m g}$	(primary): Gaussian component mean $[\mathrm{M}_{\odot}]$	34.0	$\mathcal{U}(2.0, 50.0)$	
$\sigma_{ m g}$	(primary): Gaussian component std. dev. $[M_{\odot}]$	3.6	$\mathcal{U}(0.4,10.0)$	
$\lambda_{ m g}$	(primary): fraction of the Gaussian component	0.039	$\mathcal{U}(0.01, 0.99)$	

BACKUP - CHIMERA VALIDATION

We validate the CHIMERA code against MGCosmoPop (Mancarella et al. 2022) in a pure spectral sirens analysis of the O5-like catalog.

 $p_{\rm pop}(\boldsymbol{\theta}|\boldsymbol{\lambda})$ is the **population prior** and can be written as:

$$p_{\text{pop}}(\boldsymbol{\theta}|\boldsymbol{\lambda}) = p(m_1, m_2|\lambda_{\text{m}}) \frac{p_{\text{gal}}(z, \hat{\Omega}|\lambda_c) p_{\text{rate}}(z|\lambda_r)}{\int dz \, d\hat{\Omega} p_{\text{gal}}(z, \hat{\Omega}|\lambda_c) p_{\text{rate}}(z|\lambda_r)}$$

- $\Rightarrow p(m_1, m_2 | \lambda_m)$ is the probability of having m_1, m_2 given a mass distributions;
- $\Rightarrow p_{\text{rate}}(z|\lambda_r) \propto \psi(z;\lambda_{\text{rate}})/(1+z)$ is the probability of having a merger at redshift z;
- $\Rightarrow p_{gal}(z, \hat{\Omega}|\lambda_c)$ is the probability that there is a galaxy (*host*) at $(z, \hat{\Omega})$ and is constructed from a galaxy catalog and takes into account the **completeness**

Rate evolution: Madau

$$\psi(z;\lambda_{\text{rate}}) = \frac{(1+z)^{\gamma}}{1+\left(\frac{1+z}{1+z_p}\right)^{\gamma+\kappa}},$$

BACKUP - STATISTICAL FRAMEWORK

The dark (+ bright) sirens methods can be combined within a **Hierarchical Bayesian Framework** to infer joint constraints on population and cosmology:

$$\mathcal{L}\left(\left\{\boldsymbol{d}_{i}\right\}_{i=1}^{N_{\mathrm{obs}}}\middle|\boldsymbol{\lambda}\right) \propto \frac{1}{\boldsymbol{\xi}(\boldsymbol{\lambda})^{N_{\mathrm{obs}}}} \times \prod_{i=1}^{N_{\mathrm{obs}}} \int \mathrm{d}\boldsymbol{\theta} \, \frac{p_{\mathrm{GW}}(\boldsymbol{\theta}(\boldsymbol{\theta}^{\mathrm{D}}, \lambda_{\mathrm{cosmo}})|\boldsymbol{d}_{i})}{\pi(\boldsymbol{\theta}^{\mathrm{D}}) \, \mathrm{det} \left|\frac{\mathrm{d}\boldsymbol{\theta}^{\mathrm{D}}}{\mathrm{d}\boldsymbol{\theta}}\right|} \, p_{\mathrm{pop}}(\boldsymbol{\theta}|\boldsymbol{\lambda})$$

Two sets of parameters

- 1. event-level parameters in detector- or source-frame: $\theta^{D} = \{m_1^{D}, m_2^{D}, d_L, \hat{\Omega}, \dots\}, \theta = \{m_1, m_2, z, \hat{\Omega}, \dots\};$
- 2. population-level hyper-parameters: $\lambda = \{\lambda_{\text{cosmo}}, \lambda_{\text{mass}}, \lambda_{\text{rate}}\} \implies$ what we want to constrain from GW data $d = \{d_i\}_{i=1}^{N_{\text{obs}}}$.

Key ingredients:

 $\Rightarrow p_{\text{GW}}(\theta(\theta^{\text{D}}, \lambda_{\text{cosmo}})|d_i)$ depends on the GW event and **measurement uncertainties**;

- $\Rightarrow \xi(\lambda)$ corrects the bias due to selection effects;
- $\Rightarrow p_{\text{pop}}(\boldsymbol{\theta}|\boldsymbol{\lambda})$ is the **population prior**

$$p_{\text{pop}}(\boldsymbol{\theta}|\boldsymbol{\lambda}) = p(m_1, m_2|\lambda_{\text{mass}}) \frac{p_{\text{gal}}(z, \hat{\Omega}|\lambda_{\text{cosmo}}) p_{\text{rate}}(z|\lambda_{\text{rate}})}{\int dz \, d\hat{\Omega} p_{\text{gal}}(z, \hat{\Omega}|\lambda_{\text{cosmo}}) p_{\text{rate}}(z|\lambda_{\text{rate}})}$$

BACKUP - POPULATION PRIORS II

Mass distribution: power law + Gaussian peak

$$p(m_1, m_2 | \lambda_{\text{mass}}) = p(m_1 | \lambda_{\text{mass}}) p(m_2 | m_1, \lambda_{\text{mass}}),$$

where probability of the primary BH mass is given by

$$p(m_1|\lambda_{\text{mass}}) \propto \left[(1-\lambda_p) \mathcal{P}(m_1) + \lambda_p \mathcal{G}(m_1) \right] \mathcal{S}(m_1).$$

Here, $\mathcal{P}(m_1) \propto m_1^{-\alpha}$ is a power-law truncated in the domain $m_1 \in [m_{\text{low}}, m_{\text{high}}]$, $\mathcal{G}(m) \propto \mathcal{N}(\mu_g; \sigma_g^2)$ is the Gaussian component, and $\mathcal{S}(m_1) \in [0, 1]$ is a smoothing piece-wise function defined as Abbott et al. 2021:

$$S(m_1 \mid m_{\text{low}}, \delta_m) = \begin{cases} 0 & (m_1 < m_{\text{low}}) \\ [f(m_1 - m_{\text{low}}, \delta_m) + 1]^{-1} & (m_{\text{low}} \leqslant m_1 < m_{\text{low}} + \delta_m) , \quad \text{with} \quad f(m', \delta_m) = \exp\left(\frac{\delta_m}{m'} + \frac{\delta_m}{m' - \delta_m}\right) \\ 1 & (m_1 \ge m_{\text{low}} + \delta_m) \end{cases}$$

The secondary BH mass is modeled by a power-law with an index β in the domain $m \in [m_{low}, m_1]$.

$$p(m_2|m_1, \lambda_{\text{mass}}) \propto \begin{cases} m_2^{-\beta} & (m_{\text{low}} \leq m_2 \leq m_1) \\ 0 & \text{otherwise} \end{cases}$$

BACKUP - VALIDATION OF THE NEW CHIMERA

REFERENCES

B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett.116, 061102 (2016).

B. P. Abbott et al. (LIGO Scientific, Virgo, 1M2H, Dark Energy Camera GW-E, DES, DLT40, Las Cumbres Observatory, VINROUGE, MASTER), Nature **551**, 85–88 (2017).

R. Abbott et al. (LIGO Scientific, Virgo), Astrophys. J. Lett.913, L7 (2021).

R. Abbott et al. (KAGRA, VIRGO, LIGO Scientific), Phys.Rev. X 13, 011048 (2023).

- N. Borghi et al. Astrophys. J. 964, 191 (2024).
- H.-Y. Chen et al. Class. Quant. Grav. 41, 125004 (2024).
- D. F. Chernoff et al. Astrophys. J. Lett. 411, L5–L8 (1993).
- W. Del Pozzo, Phys. Rev. D 86, 043011 (2012).
- J. M. Ezquiaga et al. Phys. Rev. Lett. 129, 061102 (2022).

D. Foreman-Mackey et al. Publ. Astron. Soc. Pac. **125**, 306–312 (2013).

- P. Fosalba et al. Mon. Not. Roy. Astron. Soc. **448**, 2987–3000 (2015).
- J. R. Gair et al. Astron. J. 166, 22 (2023).
- R. Gray et al. JCAP 12, 023 (2023).
- D. E. Holz et al. Astrophys. J. 629, 15–22 (2005).
- F. Iacovelli et al. Astrophys. J. Supp. 263, 2 (2022).
- M. Mancarella et al. Phys. Rev. D 105, 064030 (2022).
- S. Mastrogiovanni et al. Astron. Astrophys. 682, A167 (2024).
- M. Moresco et al. Living Rev. Rel. 25, 6 (2022).
- S. Nissanke et al. Astrophys. J. 725, 496–514 (2010).
- B. F. Schutz, Nature 323, 310–311 (1986).