Thermodynamics sheds light on the nature of dark matter galactic halos

Juan Barranco Monarca University of Guanajuato

In collaboration with: Andrés Aceña, Argelia Bernal, Ericson López

Seventeen Marcel Grossman Meeting

on Recent Developments in Theoretical and Experimental General Relativity, Gravitation, and Relativistic Field Theories Pescara, Italia. July 7-12,2024.

What is dark matter made of?

	I.	II.	III.	IV.	V.	VI.	VII.	VIII.	IX.	X.	\mathbf{Result}
DM candidate	Ωh^2	Cold	Neutral	BBN	Stars	Self	Direct	γ -rays	Astro	Probed	
SM Neutrinos	×	×	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	_		\checkmark	×
Sterile Neutrinos	~	\sim	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√!	\checkmark	2
Neutralino	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√!	√!	√!	\checkmark	\checkmark
Gravitino	\checkmark	\checkmark	\checkmark	2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	2
Gravitino (broken R-parity)	\checkmark	\checkmark	\checkmark	\checkmark							
Sneutrino $\tilde{\nu}_L$	~	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	×	√!	√!	\checkmark	×
Sneutrino $\tilde{\nu}_R$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√!	√!	√!	\checkmark	\checkmark
Axino	\checkmark	\checkmark	\checkmark	\checkmark							
SUSY Q-balls	\checkmark	\checkmark	\checkmark	\checkmark	2		√!	\checkmark	\checkmark	\checkmark	\sim
B^1 UED	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√!	√!	√!	\checkmark	\checkmark
First level graviton UED	\checkmark	×	×	\checkmark	$ imes^a$						
Axion	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	√!	\checkmark	\checkmark	\checkmark	\checkmark
Heavy photon (Little Higgs)	\checkmark	√!	√!	\checkmark	\checkmark						
Inert Higgs model	\checkmark	√!	—	\checkmark	\checkmark						
Champs	\checkmark	\checkmark	×	\checkmark	×	_	—	_	_	\checkmark	×
Wimpzillas	\checkmark	\checkmark	~	~							

[M. Taoso, G. Bertone and Masiero, JCAP 2008]

The fundamental physicist way...

What kind of astrophysical object can they form?

A phenomelogical way...

information about the nature of DM

What information can be extracted at galactic scales?

Look at the rotational curve of galaxies

The data:

LSB Galaxies

Start with a spherically symmetric space-time

$$ds^{2} = -e^{2\Phi/c^{2}} c^{2} dt^{2} + \frac{dr^{2}}{1 - \frac{2Gm}{c^{2}r}} + r^{2} d\Omega^{2},$$

One of the geometric potentials is determined by observations:

$$\frac{\Phi'}{c^2} = \frac{\beta^2}{r},$$

Use normalized $\rho = \rho_0 \bar{\rho}$, $p = p_0 \bar{p}$, $m = M_0 n$, $r = R_0 x$. Einstein's equations and the conservation equation read:

$$n' = 3 x^2 \bar{\rho}$$

$$\left(1 - q \frac{2n}{x}\right) \frac{\beta^2}{x} - q \frac{n}{x^2} = 3 q x \bar{p},$$

$$\bar{p}' + (\bar{p} + \bar{\rho}) \frac{\beta^2}{x} = 0,$$

Start with a spherically symmetric space-time

$$ds^{2} = -e^{2\Phi/c^{2}} c^{2} dt^{2} + \frac{dr^{2}}{1 - \frac{2Gm}{c^{2}r}} + r^{2} d\Omega^{2},$$

One of the geometric potentials is determined by observations:

$$\frac{\Phi'}{c^2} = \frac{\beta^2}{r},$$

Use normalized $\rho = \rho_0 \bar{\rho}$, $p = p_0 \bar{p}$, $m = M_0 n$, $r = R_0 x$. Einstein's equations and the conservation equation read:

$$n' = 3 x^2 \bar{\rho}$$

$$\left(1 - q \frac{2n}{x}\right) \frac{\beta^2}{x} - q \frac{n}{x^2} = 3 q x \bar{p},$$

$$\bar{p}' + (\bar{p} + \bar{\rho}) \frac{\beta^2}{x} = 0,$$

$$\bar{p}' + S(x)\,\bar{p} = T(x),$$

with

$$S(x) = -\frac{2\beta^2 \left(1 + \beta^2 - 2\beta^4 - x\beta^{2'}\right)}{(1 + \beta^2) (1 + 2\beta^2) x},$$

$$T(x) = -\frac{\beta^2 \left(\beta^2 + 2\beta^4 + x\beta^{2'}\right)}{3 (1 + \beta^2) (1 + 2\beta^2) x^3 q}.$$

For the Newtonian case:

$$n' = 3 x^2 \bar{\rho}$$
$$-q \frac{n}{x^2} = 3 q x \bar{p},$$
$$\bar{p}' + \bar{\rho} \frac{\beta^2}{x} = 0,$$

And we only need β^2 :

$$\beta^{2}(x) = \beta_{0}^{2} \frac{x^{2}}{x^{2} + rc^{2}}$$

Persic-Salucci-Stel (1996) rotational curve velocity profile

From Persic-Salucci-Stel (1996) rotational curve velocity profile an EOS for DM is obtained

$$n = \frac{\beta_0^2}{q} \frac{x^3}{(x^2 + a^2)}$$
$$\bar{\rho} = \frac{\beta_0^2}{3q} \frac{(x^2 + 3a^2)}{(x^2 + a^2)^2},$$
$$\bar{p} = \frac{\beta_0^4}{6q} \frac{(x^2 + 2a^2)}{(x^2 + a^2)^2},$$

$$a^2 = \frac{3 \,\bar{p}_0}{q \,\bar{\rho}_0^2}, \quad \beta_0^2 = \frac{3 \,\bar{p}_0}{\bar{\rho}_0}$$

$$\bar{p}(\bar{\rho}) = \bar{p}_0 \left(\frac{3}{4} \left(\frac{\bar{\rho}}{\bar{\rho}_0} \right) - \frac{1}{16} \left(1 - \sqrt{1 + 24 \left(\frac{\bar{\rho}}{\bar{\rho}_0} \right)} \right) \right)$$

It is a good moment to test the pressureless hypothesis

Label	Galaxy	$\beta_0(10^4)$	a	$ar{ ho}_ullet$	$ar{p}_ullet$
А	U5750	3.23	7.75	3.63×10^{-3}	1.26×10^{-10}
В	ESO2060140	4.00	2.16	7.17×10^{-2}	3.82×10^{-9}
С	U11748	7.94	1.07	1.15	2.42×10^{-7}

Full properties for the halos:

There is a problem:

Prefered values are in the unstable branch of the possible configurations

A further analysis for galactic dark matter halos with pressure A Aceña, J Barranco, A Bernal, E López, M Llerena arXiv preprint arXiv:2112.05865 Accepted for publication in ApJ

Thermodynamics sheds light on the nature of dark matter galactic halos

A. Aceña,¹ J. Barranco,² A. Bernal,² and E. López³

Let us star with the Burkert density profile

$$\rho(r) = \frac{\rho_0 r_0^3}{(r+r_0)(r^2+r_0^2)}$$

Mass profile can be directly computed and hydrostatic equilibrium demands:

$$\frac{dp}{dr} = -\frac{GM\rho}{r^2}$$

This gives us the pressure

Thermal equilibrium demands:

$$\frac{dT}{dr} = -\frac{GM\rho T}{r^2 p} \nabla$$

Here, an important difference: given an equation of state

The quantity ∇ depends on the thermal processes that the gas undergoes. Since we do not have any *a priori* information on energy production and transport within the DM halo, we choose to postulate the equation of state,

 $T(\rho, p)$

we can get the temperature profile

T(r) .

1. *Ideal gas:* The equation of state is

$$T = \frac{m}{k} \frac{p}{\rho},$$

2. *Fermi gas:* The equation of state takes the parametric form

$$T = \frac{m}{k} \frac{p}{\rho} \frac{f_{3/2}(z)}{f_{5/2}(z)}, \quad \frac{f_{3/2}^5(z)}{f_{5/2}^3(z)} = \frac{h^6}{8\pi^3 g^2 m^8} \frac{\rho^5}{p^3},$$

3. *Bose gas:* We need to distinguish whether Bose-Einstein condensation is occurring or not. If there is no condensation,

$$T = \frac{m}{k} \frac{p}{\rho} \frac{g_{3/2}(z)}{g_{5/2}(z)}, \quad \frac{g_{3/2}^5(z)}{g_{5/2}^3(z)} = \frac{h^6}{8\pi^3 m^8} \frac{\rho^5}{p^3},$$

Condensation occurs if $T < T_C$

$$T_C = \frac{h^2 \rho^{\frac{2}{3}}}{2\pi k m^{\frac{5}{3}} \zeta^{\frac{2}{3}} \left(\frac{3}{2}\right)},$$

 $m_{max} = 43 \, eV/c^2.$

Other phenomenological relations:

Mon. Not. R. Astron. Soc. 397, 1169–1176 (2009)

doi:10.1111/j.1365-2966.2009.15004.x

$$\rho_0 r_0 = 141^{+82}_{-52} M_{\odot}/pc^2$$

A constant dark matter halo surface density in galaxies

F. Donato,^{1*} G. Gentile,^{2,3} P. Salucci,⁴ C. Frigerio Martins,⁵ M. I. Wilkinson,⁶ G. Gilmore,⁷ E. K. Grebel,⁸ A. Koch⁹ and R. Wyse¹⁰

But in our case:

$$a^2 = \frac{3 \, \bar{p}_0}{q \, \bar{\rho}_0^2} \,, \quad \beta_0^2 = \frac{3 \, \bar{p}_0}{\bar{\rho}_0} \,.$$

$$p_0 = 0.83 \times G(\rho_0 r_0)^2 = 4.8 \times 10^{-11} \frac{g}{cm s^2}$$

Conclusions

- The rotational velocity curve can give the strongest constraints on the dark matter pressure
- If temperature is neglected, the known dark matter profiles leads to dark matter equation fo state that might not be dynamically stable
- Introducing the temperature, and working the other way around of postulating that DM is either a ideal gas, a Fermi gas or a Bose gas the temperature profile can be obtained
- Only if DM is a Bose gas, with a particle mass below 43 eV the temperatire profile is physically reasonable.
- To avoid superluminial sound of speed within the Bose condensate, the boson's mass should be biger than 1.2e-3 eV