IXPE OBSERVATIONS OF THE CRAB AND OTHER PWNE: A CRITICAL REVIEW

NICCOLO' BUCCIANTINI INAF ARCETRI - UNIV. FIRENZE - INFN

INTRODUCTION

PWNE IN X-RAY

INTERNAL STRUCTURE & MAGNETIC FIELD

TURBULENCE & ACCELERATION

A CASE FOR X-RAY POLARIMETRY

LEAKAGE

CRAB, VELA, MHS15-52, SNR B0540

FUTURE TARGETS

PWNE

PWNe are hot bubbles of relativistic particles and magnetic field emitting nonthermal radiation.

Originated by the interaction of the ultrarelativistic magnetized pulsar wind with the expanding SNR (or with the ISM)

Galactic accelerators. The only place where we can study the properties of relativistic shocks (as in GRBs and AGNs

Allow us to investigate the dynamics of relativistic outflows

FINE STRUCTURES – A LAB FOR RELTIVISTICN FLUID DYNAMICS

Crab

REPRODUCING OBSERVATIONS

Main torus Inner ring (wisps structure) Knot Back side of the inner ring

Each feature traces an emitting region

CRAB SYNCHROTRON SPECTRUM

The most efficient non-thermal accelerator.

FERMI VS RECONNECTION

FERMI DSA HIGHLY INEFFICIENT IN PSR WIND SHOCK – VERY LOW MAGNETISATION

POWER OF POLARIMETRY

POWER OF POLARIMETRY

PWN - POLARIZATION

Difference in Optical vs Radio Polarisation

Not Always Toroidal

Crab, Hester 08

SYNCHROTRON - POLARIZATION

Bandiera Petruck 2016

Crab

Bucciantini 2017

Mission name	Imaging X-ray Polarimetry Explorer (IXPE)
Mission category	NASA Astrophysics Small Explorer (SMEX)
Operational phase	2021 launch, 2 years following 1 month commissioning, extension possible
Orbital parameters	Circular at 540–620 km altitude, equatorial; one ground station near equator
Spacecraft features	3-axis stabilized pointing (non-propellant), GPS time and position
Science payload	3 x-ray telescopes, 4.0-m focal length (deployed), co-aligned to star tracker
Telescope optics (×3)	24 monolithic (P+S surfaces) Wolter-1 electroformed shells, coaxially nested
Telescope detector (×3)	Polarization-sensitive gas pixel detector (GPD) to image photo-electron track
Polarization sensitivity	Minimum Detectible Polarization (99% confidence) MDP ₉₉ < 5.5%, 0.5-mCrab, 10 days
Spurious modulation	< 0.3% systematic error in modulation amplitude for unpolarized source
Angular resolution	< 30-arcsec half-power diameter (HPD)
Field of view (FOV)	\approx 10-arcmin diameter overlapping FOV of 3 detectors' polarization-sensitive areas
Energy band, resolution	2–8 keV, ≈ 20% @ 5.9 keV
Timing accuracy	\approx 20 μs , using GPS pulse-per-second signal and on-board clocks
X-ray calibration	Telescopes (optics & detector separately, combined) on-ground; detectors on-orbit

Mission name	Imaging X-ray Polarimetry Explorer (IXPE)
Mission category	NASA Astrophysics Small Explorer (SMEX)
Operational phase	2021 launch, 2 years following 1 month commissioning, extension possible
Orbital parameters	Circular at 540–620 km altitude, equatorial; one ground station near equator
Spacecraft features	3-axis stabilized pointing (non-propellant), GPS time and position
Science payload	3 x-ray telescopes, 4.0-m focal length (deployed), co-aligned to star tracker
Telescope optics (×3)	24 monolithic (P+S surfaces) Wolter-1 electroformed shells, coaxially nested
Telescope detector (×3)	Polarization-sensitive gas pixel detector (GPD) to image photo-electron track
Polarization sensitivity	Minimum Detectible Polarization (99% confidence) MDP ₉₉ < 5.5%, 0.5-mCrab, 10 days
Spurious modulation	< 0.3% systematic error in modulation amplitude for unpolarized source
Angular resolution	< 30-arcsec half-power diameter (HPD)
Field of view (FOV)	\approx 10-arcmin diameter overlapping FOV of 3 detectors' polarization-sensitive areas
Energy band, resolution	2–8 keV, ≈ 20% @ 5.9 keV
Timing accuracy	\approx 20 μs , using GPS pulse-per-second signal and on-board clocks
X-ray calibration	Telescopes (optics & detector separately, combined) on-ground; detectors on-orbit

Mission name	Imaging X-ray Polarimetry Explorer (IXPE)
Mission category	NASA Astrophysics Small Explorer (SMEX)
Operational phase	2021 launch, 2 years following 1 month commissioning, extension possible
Orbital parameters	Circular at 540–620 km altitude, equatorial; one ground station near equator
Spacecraft features	3-axis stabilized pointing (non-propellant), GPS time and position
Science payload	3 x-ray telescopes, 4.0-m focal length (deployed), co-aligned to star tracker
Telescope optics (×3)	24 monolithic (P+S surfaces) Wolter-1 electroformed shells, coaxially nested
Telescope detector (×3)	Polarization-sensitive gas pixel detector (GPD) to image photo-electron track
Polarization sensitivity	Minimum Detectible Polarization (99% confidence) MDP ₉₉ < 5.5%, 0.5-mCrab, 10 days
Spurious modulation	< 0.3% systematic error in modulation amplitude for unpolarized source
Angular resolution	< 30-arcsec half-power diameter (HPD)
Field of view (FOV)	≈ 10-arcmin diameter overlapping FOV of 3 detectors' polarization-sensitive areas
Energy band, resolution	2–8 keV, ≈ 20% @ 5.9 keV
Timing accuracy	\approx 20 μs , using GPS pulse-per-second signal and on-board clocks
X-ray calibration	Telescopes (optics & detector separately, combined) on-ground; detectors on-orbit

Mission name	Imaging X-ray Polarimetry Explorer (IXPE)
Mission category	NASA Astrophysics Small Explorer (SMEX)
Operational phase	2021 launch, 2 years following 1 month commissioning, extension possible
Orbital parameters	Circular at 540–620 km altitude, equatorial; one ground station near equator
Spacecraft features	3-axis stabilized pointing (non-propellant), GPS time and position
Science payload	3 x-ray telescopes, 4.0-m focal length (deployed), co-aligned to star tracker
Telescope optics (×3)	24 monolithic (P+S surfaces) Wolter-1 electroformed shells, coaxially nested
Telescope detector (×3)	Polarization-sensitive gas pixel detector (GPD) to image photo-electron track
Polarization sensitivity	Minimum Detectible Polarization (99% confidence) MDP ₉₉ < 5.5%, 0.5-mCrab, 10 days
Spurious modulation	< 0.3% systematic error in modulation amplitude for unpolarized source
Angular resolution	< 30-arcsec half-power diameter (HPD)
Field of view (FOV)	≈ 10-arcmin diameter overlapping FOV of 3 detectors' polarization-sensitive areas
Energy band, resolution	2–8 keV, ≈ 20% @ 5.9 keV
Timing accuracy	\approx 20 μs , using GPS pulse-per-second signal and on-board clocks
X-ray calibration	Telescopes (optics & detector separately, combined) on-ground; detectors on-orbit

IXPE - X-RAY POLARIMETRY - CRAB

IXPE - X-RAY POLARIMETRY - CRAB

IXPE - X-RAY POLARIMETRY - CRAB

Bucciantini et al 2023

Turbulence likely very patchy inside the PWN

Bucciantini - Pescara 2024 - MG17

PSR axis

IXPE – X–RAY POLARIMETRY – CRAB

Mizuno et al 2023

IXPE – X–RAY POLARIMETRY – CRAB

Mizuno et al 2023

IXPE – X–RAY POLARIMETRY – CRAB

Mizuno et al 2023

IXPE – X–RAY POLARIMETRY – CRAB PSR

5- sigma detection in the core of P1

15% PF in the core of P1

Only models with emission coming from the current sheet in the wind survive

IXPE – X–RAY POLARIMETRY – CRAB PSR

5- sigma detection in the core of P1

15% PF in the core of P1

Bucciantini et al 2023

Only models with emission coming from the current sheet in the wind survive

IXPE – CRAB – NEW RESULTS

CLEAR DIFFERENCE WRT OPTICAL

IXPE VELA – PWN

Fei et al 2023

IXPE VELA 2' REGION PWN + BACKGROUND

Fei et al 2023

Bucciantini - Pescara 2024 - MG17

IXPE – X–RAY POLARIMETRY – VELA

Fei et al 2023

	-2^b	-1 ^b	0^{b}	1^{b}	2^{b}	
9 a	37 ± 18	27 ± 13	$61{\pm}12$	37 ± 13	47 ± 15	PD ^c
2	$-14{\pm}14$	$-21{\pm}14$	-41.7 ± 5.3	$-52{\pm}10$	$-53.8{\pm}8.9$	$\mathbf{P}\mathbf{A}^d$
1 ^a	$33{\pm}10$	$48.5 {\pm} 5.0$	53.5 ± 4.1	56.8 ± 7.1	47 ± 13	PD^{c}
_	$6.3 {\pm} 9.0$	$-22.4{\pm}3.0$	-42.2 ± 2.2	-50.2 ± 3.6	-58.2 ± 7.7	$\mathbf{P}\mathbf{A}^d$
n a	$10.3 {\pm} 8.8$	$34.4{\pm}3.9$	$49.0{\pm}2.5$	$62.8{\pm}4.0$	$44{\pm}11$	PD^{c}
0 ^a	$-7.4{\pm}24$	-34.3 ± 3.3	$-50.3 {\pm} 1.5$	$-53.9{\pm}1.9$	-50.5 ± 7.4	$\mathbf{P}\mathbf{A}^d$
10	$21{\pm}12$	27.5 ± 7.2	$38.5{\pm}4.0$	57.1 ± 5.4	$44{\pm}12$	PD^{c}
۰La	$-47{\pm}17$	-68.3 ± 7.5	$-70.0{\pm}3.0$	$-69.8{\pm}2.7$	-57.3 ± 7.9	$\mathbf{P}\mathbf{A}^d$
00	$34{\pm}15$	$4.5^{+13}_{-4.5}$	$34.9{\pm}9.5$	43 ± 12	17 ± 14	PD^{c}
$ \begin{array}{c c} $	$-51{\pm}13$	-6.0 ± 85	$86.1{\pm}7.8$	$-84.2{\pm}7.6$	$-70{\pm}23$	$\mathbf{P}\mathbf{A}^d$

Very high PF suggest no turbulence in the PWNe

Unlikely reconnection to play a major role in accelerating particles

Old sytems should be more turbulent.

IXPE – X–RAY POLARIMETRY – VELA EXTENDED

Liu et al 2023

IXPE – VELA – RADIO VS X–RAY

IXPE – X–RAY POLARIMETRY – MSH 15–52

Romani et al 2023

CLEAR EVIDENCE OF HIGH POLARISATION `30% IN THE TORUS

INCREASING LEVEL OF POLARISATION 30% TO 70% FOUND ALONG THE JET PA NOT ALIGNED

IXPE – X–RAY POLARIMETRY – MSH 15–52

Romani et al 2023

CLEAR EVIDENCE OF HIGH POLARISATION `30% IN THE TORUS

INCREASING LEVEL OF POLARISATION 30% TO 70% FOUND ALONG THE JET PA NOT ALIGNED

Polarisation of the Pulsed Emission suggest high altitude emission in the PSR magnetosphere

IXPE - X-RAY POLARIMETRY - MSH 15-52

Romani et al 2023

Region	Flux	$\Gamma_{\mathbf{X}}$	B_{Eq} ($\mu \mathrm{G}$)	Q	U	Q, U err	PD	ψ (deg)	Si
		2.35 ± 0.01	21	-0.119	0.114	0.022	0.165 ± 0.022	68.0 ± 3.8	7.
		2.22 ± 0.01	24	-0.216	0.065	0.044	0.225 ± 0.044	81.7 ± 5.6	5.
		2.34 ± 0.01	29	-0.055	0.183	0.043	0.191 ± 0.043	53.3 ± 6.5	4.
		2.26 ± 0.02	22	-0.177	0.121	0.050	0.214 ± 0.050	72.8 ± 6.7	4.
10.00		1.92 ± 0.01	16	0.313	-0.085	0.038	0.324 ± 0.038	-7.6 ± 3.4	8.
		1.87 ± 0.01	27	0.348	-0.020	0.026	0.348 ± 0.026	-1.7 ± 2.1	13
	Contraction of the local division of the loc	1.93 ± 0.01	22	0.084	0.412	0.043	0.421 ± 0.043	39.2 ± 2.9	9.
		1.84 ± 0.01	16	-0.109	0.075	0.027	0.133 ± 0.027	72.7 ± 5.9	4.
		1.69 ± 0.01	18	0.238	0.089	0.021	0.254 ± 0.021	10.2 ± 2.3	12
4	and the second	1.77 ± 0.02	16	-0.001	0.142	0.034	0.142 ± 0.034	45.2 ± 6.9	4.
		1.80 ± 0.01	20	0.092	0.256	0.025	0.272 ± 0.025	35.1 ± 2.6	11
				0.602	-0.146	0.075	0.620 ± 0.075	-6.8 ± 3.4	8.
		1.64 ± 0.01		1000		1.000 1000	0.173 ± 0.037	43.1 ± 6.1	4.
		1.74 ± 0.01			Oute	r Arc	0.278 ± 0.035	3.5 ± 3.6	8.
		1.67 ± 0.01					0.469 ± 0.041	3.2 ± 2.5	11
1 -					~		0.307 ± 0.109	11.8 ± 10.1	2.
- /						H	0.602 ± 0.090	-14.6 ± 4.3	6.
1	_		ArcE	xt L	1 1200		0.831 ± 0.159	-5.0 ± 5.3	5.
	_			/ /	Jetl				
	-			6	\sim				
	_				let2	ArcExt B	2		
S. C. stants			$\sim \mathcal{M}$	0		1			
>5 sigma	-	S	heath L 🖕	Jet3	1 11	/			
>3 sigma	-		Tot		1/1				
>2 sioma			Jei	1					
	-		Sheath	R					

IXPE – X–RAY POLARIMETRY – SNR B0540

Fei et al 2023

Optical PWN PD ~ 6% (max 30%) PSR PD ~ 6-16%

X-ray PWN PD ~25% in agreement wrt Optical

X-ray PSR PD~50% seems anti-aligned wrt nebular axis

IXPE – X–RAY POLARIMETRY – SNR B0540

Fei et al 2023

Optical PWN PD ~ 6% (max 30%) PSR PD ~ 6-16%

X-ray PWN PD ~25% in agreement wrt Optical

X-ray PSR PD~50% seems anti-aligned wrt nebular axis

IXPE – X–RAY POLARIMETRY – G 0.13–0.11

IXPE – X–RAY POLARIMETRY – G 0.13–0.11

IXPE – X–RAY POLARIMETRY – G 0.13–0.11

CURRENT CANONICAL PICTURE WELL ESTABLISHED

NO CLEAR IDENTIFICATION FOR THE ACCELERATION MECHANISM

NO CLEAR INDICATION FOR THE ORIGIN OF THE OBSERVED FLARING

NO GOOD UNDERSTANDING OF THE LEVEV AND ROLE OF TURBULENCE

CURRENT CANONICAL PICTURE WELL ESTABLISHED

NO CLEAR IDENTIFICATION FOR THE ACCELERATION MECHANISM

NO CLEAR INDICATION FOR THE ORIGIN OF THE OBSERVED FLARING

NO GOOD UNDERSTANDING OF THE LEVEV AND ROLE OF TURBULENCE

FIRST TIME WE ARE ABLE TO IMAGINE THE MAGNETIC FIELD IN X-RAY

CLEAR EVIDENCE OF TOROIDAL STRUCTURES

LARGE DIVERSITY IN THE LEVER OF TURBULENCE

CURRENT CANONICAL PICTURE WELL ESTABLISHED

NO CLEAR IDENTIFICATION FOR THE ACCELERATION MECHANISM

NO CLEAR INDICATION FOR THE ORIGIN OF THE OBSERVED FLARING

NO GOOD UNDERSTANDING OF THE LEVEV AND ROLE OF TURBULENCE

FIRST TIME WE ARE ABLE TO IMAGINE THE MAGNETIC FIELD IN X-RAY

CLEAR EVIDENCE OF TOROIDAL STRUCTURES

LARGE DIVERSITY IN THE LEVER OF TURBULENCE

CRAB, MSH15–52 & VELA POINT TO POSSIBLE DIFFERENCES IN ACCELERATION

PULSAR POLARIZATION IS HIGHLY CONSTRAINING

CURRENT CANONICAL PICTURE WELL ESTABLISHED

NO CLEAR IDENTIFICATION FOR THE ACCELERATION MECHANISM

NO CLEAR INDICATION FOR THE ORIGIN OF THE OBSERVED FLARING

NO GOOD UNDERSTANDING OF THE LEVEV AND ROLE OF TURBULENCE

FIRST TIME WE ARE ABLE TO IMAGINE THE MAGNETIC FIELD IN X-RAY

CLEAR EVIDENCE OF TOROIDAL STRUCTURES

LARGE DIVERSITY IN THE LEVER OF TURBULENCE

CRAB, MSH15-52 & VELA POINT TO POSSIBLE DIFFERENCES IN ACCELERATION

PULSAR POLARIZATION IS HIGHLY CONSTRAINING

NEED BETTER MODELS FOR INTERNAL DYNAMICS (3D PROIBITIVE)

DOES A UNIFIED MODEL MAKE SENSE?