Seventeenth Marcel Grossmann Meeting

Contribution ID: 8

Type: Talk in a parallel session

General formulae for the periapsis shift of a quasi-circular orbit in static spherically symmetric spacetimes and the strong energy condition

Thursday, 11 July 2024 15:25 (20 minutes)

We study the periapsis shift of a quasi-circular orbit in general static spherically symmetric spacetimes. We derive two formulae in full order with respect to the gravitational field, one in terms of the gravitational mass m and the Einstein tensor and the other in terms of the orbital angular velocity and the Einstein tensor. These formulae reproduce the well-known ones for the forward shift in the Schwarzschild spacetime. In a general case, the shift deviates from that in the vacuum spacetime due to a particular combination of the components of the Einstein tensor at the radius r of the orbit. The formulae give a backward shift due to the extended-mass effect in Newtonian gravity. In general relativity, in the weak-field and diffuse regime, the active gravitational mass density, $\rho A=(\epsilon+pr+2pt)/c2$, plays an important role, where ϵ , pr and pt are the energy density, the radial stress and the tangential stress of the matter field, respectively. We show that the shift is backward if ρA is beyond a critical value $\rho c 2.8 \times 10-15 g/cm 3(m/M 2)(r/a.u.)-4$, while a forward shift greater than that in the vacuum spacetime instead implies $\rho A<0$, i.e. the violation of the strong energy condition, and thereby provides evidence for dark energy. We obtain new observational constraints on ρA in the Solar System and the Galactic Centre.

Primary authors: HARADA, Tomohiro (Rikkyo University); Dr IGATA, Takahisa (Gakushuin University); Dr SAIDA, Hiromi (Daido University); Dr TAKAMORI, Yohsuke (NIT Wakayama)

Presenter: HARADA, Tomohiro (Rikkyo University)

Session Classification: Latest results from Galactic center observations

Track Classification: High-precision astrometry (HP): The situation of the Galactic center