Cosmological limits on neutrino mass sum for beyond- Λ CDM models

Helen Shao, Jo Dunkley, Jahmour Givans, Mathew Madhavacheril, Frank Qu, Blake Sherwin, Gerrit Farren, et al.

Neutrino Mass

 Neutrinos oscillate between masses

Neutrino Mass

- Neutrinos oscillate between masses
- Direct detection experiments (KATRIN): $m_{\beta} < 0.8 \text{ eV}$ (Acker 2021, 90%)

Σm_ν from cosmology

Neutrino free-streaming

 → suppression of
 structure growth on
 small-scales

CMB Lensing Potential Power (2D)

Σm_ν from cosmology

- Neutrino free-streaming

 → suppression of
 structure growth on
 small-scales
- $\Sigma m_{\nu} < 0.12 \text{ eV}$ (Planck18, 95%), < 0.072 eV (DESI, 95%)

CMB Lensing Potential Power (2D)

Σm_ν from cosmology

- Neutrino free-streaming

 → suppression of
 structure growth on
 small-scales
- $\Sigma m_{\nu} < 0.12 \text{ eV}$ (Planck18, 95%), < 0.072 eV (DESI, 95%)
- Question: are Σm_v bounds robust to cosmologies beyond LCDM?

CMB lensing: late universe Primary CMB: early universe

Galaxies

CMB Lensing

CMB lensing: late universe Primary CMB: early universe $C_{\ell}^{\Phi\Phi} = \text{lensing power}$ • Matter clustering • Σm_{ν} suppresses

clustering

Galaxies

CMB Lensing

10

Atacama Cosmology Telescope (ACT)

- 5x Planck resolution
- 2007-2022: 46% of sky
- DR6 lensing: No A_{Len} (Planck) anomaly

Data & Likelihoods

Data & Likelihoods

Data & Likelihoods

$\Lambda CDM + \Sigma m_{\nu}$

 $H_0 = 67.45 \pm 0.48$ $H_0 = 68.14 \pm 0.41$

DESI 2024

0.6 < z < 0.8 LRG
~ 3σ discrepancy
between DESI and
SDSS results

[DESI, 2024]

BAO-2 Dataset

(1) <u>SDSS</u>: z=0.15, 0.38,
0.51 (larger effective volume), 0.6<z<0.8 (3σ deviation)

(2) <u>DESI</u>: LRGs & ELGs in 0.8 < z < 1.1, ELGs and QSOs at higher z

(3) Combined DESI+SDSS for Lyα BAO

 $\Sigma m_{\nu} < 0.121 \text{ eV}$ $\Sigma m_{\nu} < 0.075 \text{ eV}$ $\Sigma m_{\nu} < 0.104 \text{ eV}$

$$H_0 = 67.45 \pm 0.48$$

 $H_0 = 68.14 \pm 0.41$
 $H_0 = 67.77 \pm 0.44$

See also: Allali & Notari, 2024 arXiv: 2406.14554

Σm_{ν} Bounds in Extended Cosmologies

"CMB" – CMB temperature and polarization anisotropies "Planck" – Planck PR4 lensing "ACT + Planck" – Planck PR4 + ACT DR6 lensing

Σm_{ν} Bounds in Extended Cosmologies

"CMB" – CMB temperature and polarization anisotropies "Planck" – Planck PR4 lensing "ACT + Planck" – Planck PR4 + ACT DR6 lensing

 $\Lambda CDM + N_{eff} + \Sigma m_{v}$

 Σm_{ν} < 0.14 eV Σm_{ν} < 0.13 eV Σm_{ν} < 0.12 eV

 $\Lambda CDM + \Omega_k + \Sigma m_{\nu}$

Dataset	$\sum m_{ u}~(95\%{ m c.l})$
CMB (Planck) + BAO-1	$< 0.17\mathrm{eV}$
CMB (Planck) + BAO-1 + SNe	$< 0.13\mathrm{eV}$
CMB (ACT+Planck) + BAO-1	$< 0.13 \mathrm{eV}$
CMB (ACT+Planck) + BAO-1+ SNe	$< 0.14 \mathrm{eV}$
CMB (ACT+Planck) + BAO-2 + SNe	$< 0.13 \mathrm{eV}$

 $wCDM + \Sigma m_{\nu}$

 $\rho_{\rm DE}(z) = w * p(z)$

values

 $wCDM + \Sigma m_{\nu}$

 $\rho_{\rm DE}(z) = w * p(z)$

 $wCDM + \Omega_k + \Sigma m_{\nu}$

 $w_0 w_a$ CDM + Σm_v

CPL Parameterization
$$w(z) = w_0 + w_a(1-a) = w_0 + w_a rac{z}{1+z}$$

 $w_0 w_a CDM + \Sigma m_{\nu}$

CPL Parameterization
$$w(z) = w_0 + w_a(1-a) = w_0 + w_a rac{z}{1+z}$$

$w_0 w_a$ CDM + Σm_v

CPL Parameterization $w(z) = w_0 + w_a(1-a) = w_0 + w_a rac{z}{1+z}$

 $w_0 w_a CDM + \Omega_k + \Sigma m_{\nu}$

 $< 0.23 \text{ eV} \rightarrow < 0.19 \text{ eV}$

- Σm_{ν} bound remains robust to:
 - Dark energy (w)
 - Phantom DE
 - Time-dependent DE w(z; w₀, w_a)
 - Curvature

- Σm_{ν} bound remains robust to:
 - Dark energy (w)
 - Phantom DE
 - Time-dependent DE w(z; w₀, w_a)
 - Curvature

Degeneracies reduced with ACT & Pantheon+ (SNe)

- Σm_{ν} bound remains robust to:
 - Dark energy (w)
 - Phantom DE
 - Time-dependent DE w(z; w₀, w_a)
 - Curvature
- Degeneracies reduced with ACT & Pantheon+ (SNe)
- DESI+SDSS: Inverted hierarchy still viable in ΛCDM

- Σm_{ν} bound remains robust to:
 - Dark energy (w)
 - Phantom DE
 - Time-dependent DE w(z; w₀, w_a)
 - Curvature
- Degeneracies reduced with ACT & Pantheon+ (SNe)
- DESI+SDSS: Inverted hierarchy still viable in ΛCDM
- Future: DESI full-shape, Euclid, SO, LiteBIRD, ...