

Università degli Studi di Ferrara

Optimising a stochastic pulse-avalanche model of GRB light curves with a genetic algorithm

L. Ferro^(1,2), L. Bazzanini^(1,2), C. Guidorzi^(1,2,3), G. Angora^(4,1), L. Amati⁽²⁾, M. Brescia^(4,5), M. Bulla^(1,3,6), F. Frontera^(1,2), R. Maccary^(1,2), M. Maistrello^(1,2), P. Rosati^(1,2,3), and A. Tsvetkova^(7,2,8)

University of Ferrara (IT)
 INAF-OAS Bologna (IT)
 INFN Section of Ferrara (IT)
 INAF-OA Capodimonte, Naples (IT)
 University of Naples "Federico II" (IT)
 INAF-OA Abruzzo, Teramo (IT)
 University of Cagliari (IT)
 Ioffe Institute, St. Petersburg (RU)

GRB light-curves simulations

Stochastic pulse avalanche models

Genetic GRBs

Results

Conclusions and prospects

Gamma-ray Bursts: high energy explosions from the deep sky

Two classes:

1. Short GRBs (Duration \leq 2 s). Progenitor: merger of a compact binary, with at least one NS.

 Long GRBs (Duration ≥ 2 s).
 Progenitor: 'collapsar', hydrogen stripped massive star, whose core collapses to a compact object.

Gamma-ray Bursts: high energy explosions from the deep sky

Two classes:

<u>Short GRBs</u> (Duration ≤ 2 s).
 Progenitor: merger of a compact binary, with at least one NS.

 Long GRBs (Duration ≥ 2 s).
 Progenitor: 'collapsar', hydrogen stripped massive star, whose core collapses to a compact object.

OUR FOCUS

Credits: NASA

- GRB prompt emission LCs show a wide array of morphologies
- The mechanism responsible for GRB prompt emission is poorly understood

Fishman and Meegan, 1995

- GRB prompt emission LCs show a wide array of morphologies
- The mechanism responsible for GRB prompt emission is poorly understood
- A description of the inner engine variability would help to constrain the mechanism that powers the GRB outflow
- Realistic GRB prompt emission simulations are needed to test trigger algorithms and characterise new instruments

- GRB prompt emission LCs show a wide array of morphologies
- The mechanism responsible for GRB prompt emission is poorly understood
- A description of the inner engine variability would help to constrain the mechanism that powers the GRB outflow
- Realistic GRB prompt emission simulations are needed to test trigger algorithms and characterise new instruments

Fishman and Meegan, 1995

• Two different simulation approaches:

Ex-novo simulations	Real data templates
Pro: statistical noise under total control	Con: Hard to decouple real signal from noise
Con : Cannot reproduce the full array of LC morphologies	Pro : Allows us to reproduce fully realistic LCs

- A promising approach to ex-novo LCs'simulations: LC as stochastic processes
- Machine learning (ML) comes to our aid

Fishman and Meegan, 1995

GRB light-curves simulations

Stochastic pulse avalanche model

Genetic GRBs

Results

Conclusions and prospects

Stochastic pulse avalanche model

 Stochastic pulse avalanche model proposed by Stern and Svensson (1996, DOI:10.1086/310267): GRB LCs as stochastic processes in <u>nearly-critical</u> <u>regime</u>

EVIDENCE FOR "CHAIN REACTION" IN THE TIME PROFILES OF GAMMA-RAY BURSTS

BORIS E. STERN^{1, 2} AND ROLAND SVENSSON² Received 1996 April 1; accepted 1996 July 24

- SS96 tested the model on the CGRO/BATSE dataset
- Four metrics: (1) average peak aligned post-peak time profile, (2) average peak aligned third moment of post-peak time profile, (3) average auto correlation function, (4) distribution of the durations + visual evaluation of the GRBs'morphologies

Stochastic pulse avalanche model

- Series of primary pulses, which generates secondary pulses until the process reaches sub-critical condition and stops.
- Basic pulse shape: <u>FRED</u>, Norris pulse (Norris+1996)

$$f(t) = \begin{cases} A \exp\left\{-\left[(t-t_p)/\tau_r\right]^2\right\}, & \text{for } t < t_p \\ A \exp\left\{-(t-t_p)/\tau\right\}, & \text{for } t > t_p \end{cases}$$

• Seven model parameters: average number of primary pulses (μ_0), average number of child pulses per parent (μ), time delay between pulses parameter (α), limits of the distribution of the parents' time constants (τ_{min} , τ_{max}), limits of the distribution of child/parent time costants (δ_1 , δ_2).

GRB light-curves simulations

Stochastic pulse avalanche models

Genetic GRBs

Results

Conclusions and prospects

Genetich Algorithms

- <u>Genetic algorithms</u>: simulate a darwinian evolution process to find the parameters that minimize a function
- Optmisation process:
- 1. Generate a random population (genome = value of the 7 parameters)
- 2. Evaluate fitness of each individual
- 3. Mate (i.e. mix the genes) pairs of best fitting individuals
- 4. Some individuals undergo random mutation (i.e. the value of the genes is randomly selected from the parameter space instead of being inherited from the parents)
- 5. Repeat on new generation

Model optimisation with GA

- GA implemented with <u>PyGAD</u> (arXiv:2106.06158)
- Fitness Metrics: four metrics defined by SS96
- <u>Data Sets</u>: (1) CGRO/BATSE (long GRBs, S2N > 70), (2) Swift/BAT (long GRBs, S2N > 15)

• <u>Constraints</u>:

- T90 > 2 s (i.e., long GRBs);
- LCs last at least for 150 s after the peak;
 S/N_{BATSE} > 70, S/N_{Swift} > 15.
- After constraints: 585 from BATSE and 531 from Swift LGRBs as the two training sets (same number as SS96).

GRB light-curves simulations

Stochastic pulse avalanche models

Genetic GRBs

Results

Conclusions and prospects

Optimised parameters

Parameter	$SS96_{BATSE}$	$\mathrm{GA}_{\mathrm{BATSE}}$	GA_{Swift}
μ	1.20	$1.10\substack{+0.03 \\ -0.02}$	$1.34\substack{+0.03\\-0.02}$
μ_{0}	1.00	$0.91\substack{+0.06 \\ -0.07}$	$1.16\substack{+0.18 \\ -0.10}$
lpha	4.00	$2.57\substack{+0.07 \\ -0.52}$	$2.53\substack{+0.25 \\ -0.00}$
δ_1	-0.50	$-1.28\substack{+0.16\\-0.05}$	$-0.75\substack{+0.11\\-0.29}$
δ_2	0	$0.28\substack{+0.01 \\ -0.03}$	$0.27\substack{+0.01 \\ -0.02}$
$ au_{min}$	0.02 s	$0.02^{+0.02}_{-0.01}{ m s}$	$0.03^{+0.02}_{-0.02}{ m s}$
$ au_{max}$	26.0 s	$40.2^{+0.9}_{-1.2} m s$	$56.8^{+0.4}_{-1.3} m s$
Loss (<i>Train</i> best)	—	0.72	0.38
Loss (<i>Train</i> avg.)	_	0.98	0.66
Loss (<i>Test</i>)	1.47	0.88	0.56

Optimised parameters

Parameter	$SS96_{BATSE}$	$\mathrm{GA}_{\mathrm{BATSE}}$	GA_{Swift}
μ	1.20	$1.10\substack{+0.03 \\ -0.02}$	$1.34\substack{+0.03 \\ -0.02}$
μ_{0}	1.00	$0.91\substack{+0.06 \\ -0.07}$	$1.16\substack{+0.18 \\ -0.10}$
lpha	4.00	$2.57\substack{+0.07 \\ -0.52}$	$2.53\substack{+0.25 \\ -0.00}$
δ_1	-0.50	$-1.28\substack{+0.16\\-0.05}$	$-0.75\substack{+0.11\\-0.29}$
δ_2	0	$0.28\substack{+0.01 \\ -0.03}$	$0.27\substack{+0.01 \\ -0.02}$
$ au_{min}$	0.02 s	$0.02^{+0.02}_{-0.01}{ m s}$	$0.03^{+0.02}_{-0.02}{ m s}$
$ au_{max}$	26.0 s	$40.2^{+0.9}_{-1.2} m s$	$56.8^{+0.4}_{-1.3} m s$
Loss (<i>Train</i> best)	—	0.72	0.38
Loss (<i>Train</i> avg.)	_	0.98	0.66
Loss (<i>Test</i>)	1.47	0.88	0.56

Optimised parameters

Parameter	$SS96_{BATSE}$	$\mathrm{GA}_{\mathrm{BATSE}}$	$\mathrm{GA}_{\mathcal{Swift}}$
μ	1.20	$1.10\substack{+0.03 \\ -0.02}$	$1.34\substack{+0.03 \\ -0.02}$
μ_{0}	1.00	$0.91\substack{+0.06 \\ -0.07}$	$1.16\substack{+0.18 \\ -0.10}$
lpha	4.00	$2.57\substack{+0.07 \\ -0.52}$	$2.53\substack{+0.25 \\ -0.00}$
δ_1	-0.50	$-1.28\substack{+0.16\\-0.05}$	$-0.75\substack{+0.11 \\ -0.29}$
δ_2	0	$0.28\substack{+0.01 \\ -0.03}$	$0.27\substack{+0.01 \\ -0.02}$
$ au_{min}$	0.02 s	$0.02^{+0.02}_{-0.01}{ m s}$	$0.03^{+0.02}_{-0.02}{ m s}$
$ au_{max}$	26.0 s	$40.2^{+0.9}_{-1.2} m s$	$56.8^{+0.4}_{-1.3} m s$
Loss (<i>Train</i> best	z) –	0.72	0.38
Loss (<i>Train</i> avg	.) –	0.98	0.66
Loss (<i>Test</i>)	1.47	0.88	0.56

Before BATSE optimization (SS96)

After BATSE optimization (GA)

Swift/BAT optimisation (GA)

Simulated light-curves: real vs fake

Simulated light-curves: real vs fake

GRB light-curves simulations

Stochastic pulse avalanche models

Genetic GRBs

Results

Conclusions and prospects

 We implemented a ML technique to optimize the parameter of a stochastic model capable of generating ex-novo realistic long <u>GRBs' LCs.</u>

- We implemented a ML technique to optimize the parameter of a stochastic model capable of generating ex-novo realistic long <u>GRBs' LCs.</u>
- GA allowed us to improve the results of the SS96 model on the BATSE dataset, and applied on the Swift one. The average properties are better reproduced. [Bazzanini et al., accepted to A&A].

- We implemented a ML technique to optimize the parameter of a stochastic model capable of generating ex-novo realistic long <u>GRBs' LCs.</u>
- GA allowed us to improve the results of the SS96 model on the BATSE dataset, and applied on the Swift one. The average properties are better reproduced. [Bazzanini et al., accepted to A&A].
- Our results <u>confirm the SS96 intuition</u>, and propel the avalanche feature in a critical regime as a key trait of the energy release in GRB engines.

- We implemented a ML technique to optimize the parameter of a stochastic model capable of generating ex-novo realistic long <u>GRBs' LCs.</u>
- GA allowed us to improve the results of the SS96 model on the BATSE dataset, and applied on the Swift one. The average properties are better reproduced. [Bazzanini et al., accepted to A&A].
- Our results <u>confirm the SS96 intuition</u>, and propel the avalanche feature in a critical regime as a key trait of the energy release in GRB engines.
- The model allows us to <u>simulate realistic LCs</u> as seen by upcoming detectors (THESEUS, HERMES and more)
- Our technique can be extended to other datasets, and more physically-grounded GRB LCs models.

Thank you for your attention!

- You can read our preprint paper here: <u>https://arxiv.org/abs/2403.18754</u>
- Or scan this QR-code:

