Constraints on FRB emission in the aftermath of GRBs

Barbara Patricelli^{1,2,3}

¹Physics Department - University of Pisa ⁻INFN/- Sezione di Pisa INAF - Osservatorio Astronomico di Roma

Seventeenth Marcel Grossmann Meeting July 7-12, 2024 Pescara, Italy

in collaboration with: M.G. Bernardini, M. Ferro

Patricelli et al. 2024, submitted to A&A arXiv:2407.07146

Outline

Search for GRB/FRB association using archival data

3 Can we rule out the association between GRBs and FRBs?

2/12

Discussion and conclusions

Introduction

Search for GRB/FRB association using archival data Can we rule out the association between GRBs and FRBs? Discussion and conclusions

Introduction

Physical origin of FRBs is still unknown

Many FRB progenitor models advocate scenarios that hint to a possible association with GRBs, e.g.:

Many models consider **magnetars as possible FRB sources**, supported by the association of FRBs with SGR 1935+2154

(CHIME/FRB Coll. et al. 2020, Bochenek et al. 2020, Mereghetti et al. 2020)

Image credit: McGill University Graphic Design Team

Observations of GRB emission, in particular in the X-ray band, point towards magnetars as plausible candidates as GRB central engines

(Dai & Lu 1998, Zhang & Meszaros 2001, Metzger et al. 2011)

Image credit: Antonia Rowlinson/University of Leicester/NASA/Swift

Do FRBs and GRBs have a common progenitor?

Search for GRB/FRB association with archival data

GRBs

- We considered all GRBs (long and short) detected by Swift until March 2023
- We selected the GRBs with Swift/XRT detection (position known with accuracy $\sigma_{\rm GRB}\lesssim 5'')\to 1276~{\rm GRBs}$

FRBs

- We considered all the FRBs from the FRBSTATS Catalogue available until March 2023
- We selected the ones with an accuracy in the localization $\sigma_{\rm FRB} \leq 30' \rightarrow 633$ FRBs (516 FRBs discovered by CHIME)

We searched for GRBs spatially coincident with FRBs and we further required that:

- the FRBs follows the GRB event (temporal constraint)
- the GRB redshift $z_{\rm GRB}$ is at least lower than the FRB redshift $z_{\rm FRB}$, as estimated from the DM (distance constraint)

Catalogues cross-match

When requiring spatial and temporal constraints, we found **21** positive matches (in 2 cases, the same GRB matches two different, close by FRBs)

When additionally requiring $z_{\rm GRB} \leq z_{\rm FRB}$ we found **two**, low significance matches:

- Long GRB 110715A at z_{GRB} =0.82, and the non-repeating FRB 20171209A, discovered by Parkes, with z_{FRB} = 1.17 (see also Wang et al. 2020);
- Short GRB 060502B at an estimated redshift $z_{\rm GRB}{=}0.287,$ and the non-repeating FRB 20190309A, discovered by CHIME, with $z_{\rm FRB}=0.32$ (see also Lu et al. 2024)

Chance probability of FRB/GRB association

Which is the probability of having a specific number of GRB-FRB association just by chance?

We performed 10^5 realizations of two synthetic populations of GRBs and FRBs

- Each synthetic population contains 1276 GRBs and 516 FRBs
- We assumed isotropic and homogeneous distribution of sources in space; FRBs: simulations restricted to the Northern hemisphere (CHIME observable sky)
- Uncertainty in the sky localization
 - GRBs: negligible;
 - FRBs: randomly extrated from a gaussian distribution with μ =14.9' and σ =6.2' (observed distribution for well localized CHIME FRBs)
- Redshift randomly extracted from the FRB and GRB redshift distributions
- Random time occurrence
 - GRBs: from Nov 20, 2004 to March 21, 2023;
 - FRBs: from July 25, 2018 to November 28, 2022

Chance probability of FRB/GRB association

Spatial and temporal constraints

Spatial, temporal and distance constraints

Number of matches found with catalogues cross-match is consistent at a $3-\sigma$ level with expectations from chance coincidences

7/12

Can we rule out the association between GRBs and FRBs with current observations?

8/12

How likely is to detect a FRB from a GRB if they are associated?

Assumption: every GRB is associated with an FRB

We generated a synthetic population of 10⁶ FRBs

- Only non-repeating FRBs are considered; no a-priori time delay between FRBs and GRBs is choosen
- Redshift drawn from the redshift distribution of Swift GRBs
- rest-frame isotropic energy drawn from the energy distribution derived by Hashimoto et al. 2022
 - Schechter function
 - FRBs from the first CHIME catalog, divided in several subsamples filling different redshift bins
 - two different sets of redshift bins ("redshift A" and "redshift B")
- Observed fluence in the CHIME frequency band (400 MHz 800 MHz) estimated as:

$$F_{\nu} = \frac{(1+z)^{2-\gamma} E_{rest,400}}{4\pi d_L^2(z) \Delta \nu}$$

FRB detection rates - I

• We compared the fluence of simulated FRBs with the CHIME detection threshold $F_{\rm lim}{=}5$ Jy ms \rightarrow $P_{\rm FRB}$

• We estimated the FRB detection rate considering P_{FRB}, the Swift GRB detection rate and the instrument field of view (fov) and duty cycle (DC)

DC	fov	Det. rate
	deg^2	yr^{-1}
100	240	$[5-11] \times 10^{-3}$

• The absence of a clear association between FRBs in the current (4 years) CHIME catalog and Swift GRBs cannot exclude that the two phenomena have a common progenitor

10/12

FRB detection rates - II

We performed the same analysis also considering Parkes, ASKAP and SKA1-MID (observed fluence at 1.4 GHz)

	F_{lim}	DC	fov	Det. rate
	Jy ms		deg^2	yr^{-1}
Parkes	2	100	0.6	$[1-2] \times 10^{-5}$
ASKAP	26	100	150	$[4-8] \times 10^{-4}$
SKA1-MID	0.014	20	20	$[1-3] \times 10^{-3}$

The expectations for joint detection rates with other current/future radio facilities are comparable to CHIME performances

To increase the probability of having a joint detection more efficient GRB detectors are also needed, e.g. THESEUS (Amati et al. 2018)

Conclusions

- We performed a comprehensive search for possible association between FRBs and GRBs, looking into archival data
- We identified only two, low significant matches; number of matches consistent with expectations from chance coincidence
- The absence of any unambiguous association so far cannot exclude that the populations of FRBs and GRBs are connected, given the characteristics of current detectors
- Future observations with next generation of GRB and FRB detectors will be key to put more stringent constraints on the GRB-FRB association

