

Improving Low-frequency sensitivity of GW detectors: A new compact seismic attenuation system for the Einstein Telescope

MUR PRIN ET

M. Razzano, F. Fidecaro, M. Baratti, L. Bellizzi, A. Fiori, F. De Santi, L. Muccillo, M. A. Palaia, L. Papalini, M. Vacatello University of Pisa & INFN-Pisa

> 17th Marcel Grossmann Meeting Pescara, 7 -12 July 2024

BHETSA Black Holes for ET in SArdinia

The era of gravitational waves

Credits: Caltech/MIT/LIGO Lab

M. Razzano

ABINE DICULIANTS

LF science cases: high-mass black holes

- Black hole physics
 - High-mass binary black holes ∝ f⁻¹
 - $M_{obs} = (1+z)M_{src} \rightarrow high-z black holes$
 - Higher Signal-to-noise ratio
 - Characterize the BH population

Maggiore et al, 2020, JCAP, 03, 50

LF science case: close encounters

Main Features

- Hints of a dynamical formation channel
- N-body interactions
- F-modes excitations in neutron stars: EoS studies
- Single or multi-burst expected emission

De Santi et al 2024, 109,102004

- New methods for CE: Deep Learning
 - Normalizing Flows for fast parameter estimation
 - From 10h (5x10³ samples) to 0.5s (5x10⁴ samples)
 - More details in De Santi et al PRD,109,102044, (2024)

M. Razzano

LF science case: BNS early warning

• Early warning

- Time to coalescence increase with lower frequencies
- Better waveform measurement and parameter estimation
- Prealert → Enabling real-time/simultaneous electromagnetic observations

LF science case: pulsars

Isolated neutron stars

- Expected continuous, periodic GW emission (not yet detected!)
- Depending on asymmetries in the neutron star structure
- f_{GW} at twice the neutron star spin frequency

Low frequencies and ET

Main Components

- Micro seismic noise
- Gravity gradient (Newtonian Noise)
- Control noise
- Residual noise

Newtonian noise crossing point 2x10⁻²² Hz^{-1/2} @1.8 Hz (3.2Hz@AdVirgo)

Maggiore et al, 2020, JCAP, 03, 50

- ET seismic attenuation system
 - Baseline design: 17m high
 - Superattenuator concept like Virgo
 - →Reducing height will reduce excavation costs

ET Conceptual Study, 2011

The SuperAttenuator concept

• Key ideas

- Implement passive attenuation
- Active attenuation to damp resonances
- Sensing and control to mantain components in working point

Virgo superattenuator

- Inverted Pendulum as pre-isolator
- Standard filters
- Payload
- Normal mode resonance frequencies < 2 Hz
- Total height 8.66 m

Accadia et al 2012, CQG

The inverted Pendulum

Recap in Inverted Pendulum

- Acting as gravity antispring
- System very soft, low forces to move

 $F \cong M\omega_0^2 x$

Accadia et al, 2012, RSI,82,094502

Losurdo et al, 1999, RSI,70,2507

Main components

- Three 6-m hollow legs
- Top ring + Filter 0
- Horizontal normal modes tuned at 30-40 mHz
- Filter 0 equipped with sensors and actuators to damp resonances

Standard Filters

• Main Body

- Rigid, drum-like structure
- A moving part, attached to lower stages
- Vertical attenuation by cantilever triangular blades+magnetic antispring

The Pendulum Inverted Pendulum

• Key Ideas

- Seismic attenuation in a compact space
- Fold a Inverted Pendulum+Pendulum
- System is stable if k stiff

• 11: 1.544, # Pendulum length\
• 12: 0.520, # IP length\
• T1: 2551.0, # Pendulum tension\
• T2: 1766.0, # IP compression\
• m1: 80.0, # Pendulum mass\
• m2: 80.0, # Filter mass\
• m3: 100.0, # Load\
• I1s: 20.0, # Pendulum moment of inertia \
• I2s: 0.8, # IP moment of inertia\
• k: 1700.0, # flex joint elastic constant\

θ m_2 κθ 12 m_1 m_3 θ_1 X₁ X_2

F. Fidecaro, @GWADW2022

Normal modes @ 0.68Hz and 0.74Hz

Attenuation Factor

Horizontal Attenuation

$$A_{f0} = (\frac{f_0^2}{f^2 - f_0^2})^2$$

For
$$f_0 = 0.75$$
Hz:

# of PIPs	Attenuation @2 Hz
1	2.7x10 ⁻²
2	7.2x10 ⁻⁴
3	1.9x10 ⁻⁵

Required Attenuation For ET $\approx 5 \times 10^{-5}$

CU

150

Ca

F. Fidecaro,@GWADW2022

First Characterizations

• First Prototype

- First components built and tested at INFN-Pisa Lab
- Characterized PIP inverted pendulum legs
- LVDT sensors on top and bottom of the legs
- Study transfer function and resonances
- Full PIP under test

Counterweights

Conclusions

Low frequency Science Cases

- High-mass black holes (hints: GW190426_190642)
- Multi-messenger opportunities and early warning (GW170817)
- Other interesting sources (pulsars, encounters,...)

New ideas for seismic attenuation

- Passive+active approach
- Elaborate on SuperAttenuator concept
- Compact Filter based on Pendulum Inverted Pendulum
- R&D supported by the project Black Holes for ET in Sardinia (BHETSA), funded by the PRIN2020 call. More details on http://bhetsa.df.unipi.it/
- PIP Construction and test has been done
- Not just simulations...

